Math 54 Quiz 4

September 19, 2019

Question 1 (2 points)

Directions: For each item, circle either True or False. (0.5 points each)

- (True/False) There is a surjective linear transformation from \mathbb{R}^{2} to \mathbb{R}^{4}.
- (True/False) Every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{n} is an isomorphism.
- (True/False) If A is an $n \times n$ matrix, then if $A \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^{n}, then $A \mathbf{x}=\mathbf{0}$ has a unique solution.
- (True/False) If A and B are both invertible square matrices of the same size, then $A+B$ is also invertible.

Question 2 (6 points)

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that

$$
T(1,1)=(1,1,1) \quad T(2,-1)=(0,1,-1)
$$

Determine if T is injective, surjective, bijective.

Question 3 (7 points)

Define the cyclic permutation linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ by

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{4}, x_{1}, x_{2}, x_{3}\right)
$$

- Find the matrix A for T.
- Is T injective, surjective, bijective? (Hint: Your row reduction can easily be done by just switching rows and using no other elementary row operations.)
- If T is bijective, find a formula for $T^{-1}(y)$, where $y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$.

