Math 54 Quiz 3

September 12, 2019

Question 1 (3 points)

Directions: For each item, circle either True or False. (0.5 points each)

- (True/False) There exist a set of 2019 vectors total that altogether span \mathbb{R}^3 .
- (True/False) The three vectors (1, 2, 1, 3, 4), (1, 2, 0, 0, 1), (-1, 2, 1, -1, -1) form a basis for \mathbb{R}^5 .
- (True/False) Three linearly independent vectors in \mathbb{R}^3 must also span \mathbb{R}^3 .
- (True/False) Any set of vectors that contains the zero vector is linearly dependent.
- (True/False) If v_1, v_2, v_3, v_4 are linearly independent in \mathbb{R}^4 , then v_1, v_2, v_3 are also linearly independent in \mathbb{R}^4 .
- (True/False) If v_1, v_2, v_3 are linearly dependent in \mathbb{R}^3 , then v_1, v_2 are also linearly dependent in \mathbb{R}^3 .

Question 2 (6 points)

Determine if (1, 2, 3, 1), (0, 1, 1, 1), (0, 1, 2, -1), and (-1, -3, -5, 0) form a basis for \mathbb{R}^4 .

Question 3 (6 points)

Find the span of the vectors (1, 2, 1, 1), (1, 0, 0, 1), (2, 2, 1, 2) in \mathbb{R}^4 . (In particular, describe all (a, b, c, d) that are in this span by giving conditions on a, b, c, and d).

Find one vector in \mathbb{R}^4 that is not in Span{(1, 2, 1, 1), (1, 0, 0, 1), (2, 2, 1, 2)}.