Math 54 Quiz 3

September 12, 2019

Question 1 (3 points)

Directions: For each item, circle either True or False. (0.5 points each)

- (True/False) There exist a set of 2019 vectors total that altogether span \mathbb{R}^{3}.
- (True/False) The three vectors $(1,2,1,3,4),(1,2,0,0,1),(-1,2,1,-1,-1)$ form a basis for \mathbb{R}^{5}.
- (True/False) Three linearly independent vectors in \mathbb{R}^{3} must also span \mathbb{R}^{3}.
- (True/False) Any set of vectors that contains the zero vector is linearly dependent.
- (True/False) If $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly independent in \mathbb{R}^{4}, then v_{1}, v_{2}, v_{3} are also linearly independent in \mathbb{R}^{4}.
- (True/False) If v_{1}, v_{2}, v_{3} are linearly dependent in \mathbb{R}^{3}, then v_{1}, v_{2} are also linearly dependent in \mathbb{R}^{3}.

Question 2 (6 points)

Determine if $(1,2,3,1),(0,1,1,1),(0,1,2,-1)$, and $(-1,-3,-5,0)$ form a basis for \mathbb{R}^{4}.

Question 3 (6 points)

Find the span of the vectors $(1,2,1,1),(1,0,0,1),(2,2,1,2)$ in \mathbb{R}^{4}. (In particular, describe all (a, b, c, d) that are in this span by giving conditions on a, b, c, and d).

Find one vector in \mathbb{R}^{4} that is not in $\operatorname{Span}\{(1,2,1,1),(1,0,0,1),(2,2,1,2)\}$.

