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July 16, 2019

This problem set is due July 20, 2019, 11:59 PM. You may collaborate with other students
in the class on this problem set, but your solutions must be own, and you should write up
the solutions by yourself. Some of the problems below may be challenging, so start early,
and feel free to come to office hours or ask questions on Piazza if you need help.

Textbook Problems

These questions are from Lay, Lay, McDonald Linear Algebra and Its Applications

• Section 4.4: 4, 8, 14, 19

• Section 4.7: 6, 8, 14

Additional Problems

Problem 1

Let V be a finite-dimensional vector space. A linear operator is any linear transformation
from a vector space V to itself. Let T : V → V be a linear operator, where dim(V ) is finite.

• Show that if T is one-to-one, then T is onto (and hence bijective).

• Show that if T is onto, then T is one-to-one (and hence bijective).

• For each part above, give an example (two examples total) to show that the results
above do not necessarily hold if T is just a linear transformation between two different
vector spaces (and hence is not a linear operator).

(Hint: Using Rank-Nullity Theorem will make the first two parts very short.)

Problem 2

Here is more practice on kernel, range, rank, and nullity.

• Show that if T : V → W is a linear transformation, then range(T ) is a subspace of W .
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• Consider Mn×n. Let S be the subspace of n × n matrices whose elements in the first
row sum to zero, and whose elements in the second column sum to zero. Find dim(S).
(Hint: Define a linear transformation T : Mn×n → R2 such that S = ker(T ) and use
Rank-Nullity Theorem).

• Consider P40. Let S be the subspace of polynomials in P40 whose coefficients on the
even powers all sum to zero. Find dim(S). (Hint: Similar idea to the previous part.)

Problem 3

A vector space is called infinite dimensional if no finite set of vectors spans the whole space.
Let R∞ be the set of infinite sequences of real numbers a0, a1, a2, ... that are eventually zero
(so that there exists a positive integer M such that the Mth term and beyond are all zeros).

• Check that R∞ is a vector space. (For the sake of brevity, you only need to verify that
it is closed under addition, closed under scalar multiplication, has a zero vector, and
has a notion of additive inverse, and not the other properties.)

• Show that R∞ is infinite dimensional. (Hint: Argue by contradiction. Suppose that
finitely many sequences S1, S2, ..., Sk span all of R∞. We will show that this is im-
possible. There is some large enough positive integer N for which the Nth term and
beyond for all of these finitely many sequences is all zeros. But then the span of these
sequences has Nth term and beyond all equal to 0, so the span cannot be all of R∞,
which gives a contradiction).

Problem 4

Recall that if V is a vector space, then L(V,R) is the set of all linear transformations from V
to R, which is called the set of linear functionals on V . Describe all elements of L(Rn,R).

(Remark: You may notice that these linear transformations are all given by dot products
with a fixed vector in Rn. This is a simple example of a mathematical result called the Riesz
representation theorem. More on this when we talk about inner product spaces.)

Problem 5

Consider the sets M3×3 and Skew3×3, where Skew3×3 is the subspace of skew symmetric
matrices (matrices such that At = −A). Let B denote the standard ordered basis for M3×3
and consider the sets

C1 =


 0 1 0
−1 0 0
0 0 0

 ,

 0 0 1
0 0 0
−1 0 0

 ,

0 0 0
0 0 1
0 −1 0


C2 =


 0 2 1
−2 0 0
−1 0 0

 ,

 0 1 2
−1 0 −1
−2 1 0

 ,

0 −1 0
1 0 1
0 −1 0


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• You already saw in Problem Set 4 that C1 is an ordered basis for Skew3×3. Prove that
C2 is an ordered basis for Skew3×3 also (can be done easily using a system of equations
and the determinant) and find the change of basis matrix from C1 to C2 and the change
of basis matrix from C2 to C1.

• For any matrix A in M3×3, show that A − At is in Skew3×3. Then, prove that the
function T : M3×3 → Skew3×3 given by T (A) = A − At is a linear transformation.
Then, find [T ]B→C1 and [T ]B→C2 where B is the standard basis for M3×3. (Hint: To do

this very quickly, it will help to find the inverse of the matrix

2 1 −1
1 2 0
0 −1 1

 and apply

this to find the solution to a system of equations. You may use a calculator to do this,
and for all matrix multiplications.)

• Consider the transpose linear transformation t : Skew3×3 → Skew3×3. Find [t]C1→C1 ,
[t]C1→C2 , [t]C2→C1 and [t]C2→C2 . Check that I = [t]2C1→C1 = [t]2C2 = [t]C2→C1 [t]C1→C2 =
[t]C1→C2 [t]C2→C1 . Why does this make sense, considering the abstract definition (not
matrix definition) of the transpose? (Hint: What is t composed with t?)

• Next, note that it is not true that I = [t]2C1→C2 or I = [t]2C2→C1 . Why does this not
contradict your explanation in the previous part? (Hint: Carefully keep track of which
basis the coordinates are with respect to when you do t composed with t.)
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