Math 1B Final Review 3

April 21, 2019

Topics to Review:

- Telescoping series, geometric series
- N th term test (also called divergence test)
- p test
- Test for nonnegative series (Direct Comparison Test, Limit Comparison Test, Integral Test)
- Absolute vs. conditional convergence
- Alternating series test
- Ratio test/root test

Question 1: Nonnegative series

Determine if the following series converge or diverge.

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{\sqrt{n}+2}{n^{2}+3 n-2} \\
\sum_{n=1}^{\infty} \arctan \left(\cos \left(\frac{1}{n}\right)\right) \\
\sum_{n=0}^{\infty} \frac{n^{2}}{e^{n}} \\
\sum_{n=1}^{\infty} n^{2} \tan \left(\frac{1}{n^{4}}\right) \\
\sum_{n=1}^{\infty} \frac{2^{n}}{7^{n}-6^{n}}
\end{gathered}
$$

Question 2

Show that the following series are convergent. Then, find the values of the following convergent series.

$$
\begin{aligned}
& \sum_{n=4}^{\infty} \frac{1}{n^{2}-4 n+3} \\
& \sum_{n=0}^{\infty} \frac{(-1)^{n-1} 4^{n}}{5^{n}}
\end{aligned}
$$

Question 3

Do the following series converge absolutely, converge conditionally, or diverge?

$$
\begin{gathered}
\sum_{n=1}^{\infty}(-1)^{n} \sec \left(\frac{1}{n}\right) \\
\sum_{n=1}^{\infty} \frac{(2 n)!}{1 \cdot 4 \cdot 7 \cdots(3 n-2)} \\
\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n^{3}-2} \\
\sum_{n=1}^{\infty}(-1)^{n^{2}}\left(\frac{2 n}{n+\sqrt{n}}\right)^{n} \\
\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \ln (n)}{\sqrt{n}} \\
\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{n}}{2^{n}(n+1)!}
\end{gathered}
$$

