Math 1B Final Review 1

April 5, 2019

Topics to Review:

- Integration by u-substitution.
- Integration by integration by parts.
- Trigonometric integrals, and integration by trigonometric substitution.
- Integration by partial fraction decomposition.
- Arc length and surface area.

Question 1

Compute the following integrals.

$$
\begin{gathered}
\int \frac{(\ln (x))^{2}}{\sqrt{x}} d x \\
\int \frac{1}{x \ln (x) \ln (\ln (x))} d x \\
\int e^{-2 x} \cos (3 x) d x \\
\int \frac{x}{\sqrt{x^{2}-4}} d x \\
\int \frac{x^{4}-x}{x^{3}-x} d x \\
\int \sin ^{2}(x) \cos ^{2}(x) d x \\
\int \frac{x^{2}+2 x}{\left(x^{2}+4 x+5\right)^{2}} d x \\
\int \frac{x^{2}}{(x+1)\left(x^{2}-4 x+4\right)} d x \\
\int \frac{\sqrt{x}}{x+1} d x \\
\int \frac{\tan ^{3}(x)}{\sec (x)} d x
\end{gathered}
$$

Question 2

Consider the function $y=e^{x}$. Suppose the graph is rotated around the x-axis. What is the surface area of the resulting surface of revolution from $x=-1$ to $x=1$? Use the integration formula

$$
\int \sec ^{3}(\theta) d \theta=\frac{1}{2} \sec (\theta) \tan (\theta)+\frac{1}{2} \ln |\sec (\theta)+\tan (\theta)|+C
$$

Question 3

Consider the function $y=\frac{1}{3}(1+4 x)^{3 / 2}$. What is arc length of this curve from $x=1$ to $x=3$?

Question 4

Find the arc length of the function

$$
y=\frac{1}{16} x^{4}+\frac{1}{2 x^{2}}
$$

from $x=1$ to $x=2$. Then, find the surface area of the solid of revolution from $x=1$ to $x=2$ obtained from rotating this function around the x-axis.

Question 5

Use the integral test to determine whether the following two series converge absolutely, converge conditionally, or diverge.

$$
\begin{gathered}
\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln (n)}{n^{3}} \\
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{e^{n}}
\end{gathered}
$$

