Math 1B Final Review 1

April 5, 2019

Topics to Review:

- Integration by u-substitution.
- Integration by integration by parts.
- Trigonometric integrals, and integration by trigonometric substitution.
- Integration by partial fraction decomposition.
- Arc length and surface area.

Question 1

Compute the following integrals.

$$\int \frac{(\ln(x))^2}{\sqrt{x}} dx$$

$$\int \frac{1}{x \ln(x) \ln(\ln(x))} dx$$

$$\int e^{-2x} \cos(3x) dx$$

$$\int \frac{x}{\sqrt{x^2 - 4}} dx$$

$$\int \sin^2(x) \cos^2(x) dx$$

$$\int \frac{x^2 + 2x}{(x^2 + 4x + 5)^2} dx$$

$$\int \frac{x^2}{(x + 1)(x^2 - 4x + 4)} dx$$

$$\int \frac{\sqrt{x}}{x + 1} dx$$

$$\int \frac{\tan^3(x)}{\sec(x)} dx$$

Question 2

Consider the function $y = e^x$. Suppose the graph is rotated around the x-axis. What is the surface area of the resulting surface of revolution from x = -1 to x = 1? Use the integration formula

$$\int \sec^3(\theta)d\theta = \frac{1}{2}\sec(\theta)\tan(\theta) + \frac{1}{2}\ln|\sec(\theta) + \tan(\theta)| + C$$

Question 3

Consider the function $y = \frac{1}{3}(1+4x)^{3/2}$. What is arc length of this curve from x = 1 to x = 3?

Question 4

Find the arc length of the function

$$y = \frac{1}{16}x^4 + \frac{1}{2x^2}$$

from x = 1 to x = 2. Then, find the surface area of the solid of revolution from x = 1 to x = 2 obtained from rotating this function around the x-axis.

Question 5

Use the integral test to determine whether the following two series converge absolutely, converge conditionally, or diverge.

$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln(n)}{n^3}$$

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{e^n}$$