Math 1A: Examples of $\epsilon-\delta$ Proofs

Jeffrey Kuan

September 19, 2018

1 Example 1

Question: Prove using an $\epsilon-\delta$ proof that

$$
\lim _{x \rightarrow 2}(x+1)=3
$$

Proof. - Consider any $\epsilon>0$.

- We want to find a $\delta>0$ so that if $0<|x-2|<\delta$, then $|(x+1)-3|<\epsilon$.
- Simplifying, we want to find a $\delta>0$ so that if $0<|x-2|<\delta$, then $|x-2|<\epsilon$.
- But we see that if we just let $\delta=\epsilon$, then this would exactly work, since if $0<|x-2|<\delta$, then $|x-2|<\delta$ and $|x-2|<\epsilon$, as $\delta=\epsilon$. So we have shown that if $0<|x-2|<\delta$ for $\delta=\epsilon$, then $|x-2|<\epsilon$.
- So we are done.

2 Example 2

Question: Prove using an $\epsilon-\delta$ proof that

$$
\lim _{x \rightarrow-1}(3 x+1)=-2
$$

Proof. - Consider any $\epsilon>0$.

- We want to find a $\delta>0$ so that if $0<|x+1|<\delta$, then $|(3 x+1)-(-2)|<\epsilon$.
- Simplifying, we want to find a $\delta>0$ so that if $0<|x+1|<\delta$, then $|3 x+3|<\epsilon$.
- Simplifying even more, we want to find a $\delta>0$ so that if $0<|x+1|<\delta$, then $3|x+1|<\epsilon$.
- But if we just let $\delta=\frac{\epsilon}{3}$, then this is true. Because if $0<|x+1|<\delta$, since $\delta=\frac{\epsilon}{3}$, then $|x+1|<\frac{\epsilon}{3}$. Multiplying both sides by 3 , we have that $3|x+1|<\epsilon$, as desired. So we have shown that for $\delta=\frac{\epsilon}{3}$, if $|x+1|<\delta$, then $3|x+1|<\epsilon$.
- So we are done.

3 Example 3

Question: Consider the function

$$
\begin{aligned}
& f(x)=1 \text { if } x=0 \\
& f(x)=0 \text { if } x \neq 0
\end{aligned}
$$

Use an $\epsilon-\delta$ proof to show that $\lim _{x \rightarrow 0} f(x)=0$.
Proof. - Consider any $\epsilon>0$.

- We want to find a $\delta>0$ so that if $0<|x-0|<\delta$, then $|f(x)-0|<\epsilon$.
- Simplifying, we want to find a $\delta>0$ so that if $0<|x|<\delta$, then $|f(x)|<\epsilon$.
- We note that any δ here will work, because if $0<|x|<\delta$, then $x \neq 0$, so that $f(x)$ will always be 0 .
- To illustrate this, we can let $\delta=1$. We show that this works. If $0<|x|<1$, then certainly, $x \neq 0$ and thus, $f(x)=0$, so that $|f(x)|=0<\epsilon$. So we have shown that if $0<|x|<1$ (where $\delta=1$), then $|f(x)|=0<\epsilon$.
- So we are done.

4 Example 4

Question: Consider the function

$$
f(x)=x^{5}+2
$$

Use an $\epsilon-\delta$ proof to show that f is continuous at the origin.
Proof. To show that f is continuous at the origin, we must show that

$$
\lim _{x \rightarrow 0} f(x)=f(0)
$$

Since $f(0)=2$, all we need to do is show that $\lim _{x \rightarrow 0} x^{5}+2=2$. We can do this using an $\epsilon-\delta$ proof.

- Consider any $\epsilon>0$.
- We want to find a $\delta>0$ so that if $0<|x-0|<\delta$, then $\left|\left(x^{5}+2\right)-2\right|<\epsilon$.
- Simplifying, we want to find a $\delta>0$ so that if $0<|x|<\delta$, then $\left|x^{5}\right|<\epsilon$.
- We note that if we let $\delta=\sqrt[5]{\epsilon}$, then this will work. The next step is to check that this choice of δ works.
- If $0<|x|<\delta$, then since $\delta=\sqrt[5]{\epsilon}$, we have that $0<|x|<\sqrt[5]{\epsilon}$. So $|x|<\sqrt[5]{\epsilon}$. This implies that $|x|^{5}<\epsilon$. Since $|x|^{5}=\left|x^{5}\right|$, we have that $\left|x^{5}\right|<\epsilon$ whenever $0<|x|<\delta$. So we have shown that if $0<|x|<\delta$ where $\delta=\sqrt[5]{\epsilon}$, then $\left|x^{5}\right|<\epsilon$.
- So we are done.

