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Homogeneous and Inhomogeneous Systems

Remember that we can express solution sets in terms of using parametric vector form.
For example, let’s consider the following two systems.

x + 3y + z = 2

2x + 3y − 4z = 1

x + 3y + z = 0

2x + 3y − 4z = 0

and let us express the solution sets to each in parametric vector form. Note the first system
is non-homogeneous and has the solution set

(−1 + 5s, 1− 2s, s) = (−1, 1, 0) + s(5,−2, 1)

and the second system is the corresponding homogeneous system for the first system and
has the solution set

(5s,−2s, s) = s(5,−2, 1)

We see an interesting pattern here. The solution to the non-homogeneous problem is

(−1 + 5s, 1− 2s, s) = (−1, 1, 0) + s(5,−2, 1)

and note that the homogeneous solution s(5,−2, 1) is added onto (−1, 1, 0) to get the non-
homogeneous solution. Here, (−1, 1, 0) is a particular solution for the inhomogeneous
problem, since if we plug it into the system

x + 3y + z = 2

2x + 3y − 4z = 1

we see that it is actually a solution. This is a general phenomenon. The solution to an
inhomogeneous system is any particular solution to the inhomogeneous system
plus the solution to the homogeneous system. This is true because you can show
that the difference between any two particular solutions to a non-homogeneous system is a
solution of the homogeneous system.

1



Equivalence Theorem for Span and Ax = b

Yesterday, we learned the concept of span and the coefficient matrix associated with a
system. We will see that these concepts are actually connected to each other. The following
equivalence theorem shows that span, existence of solutions to systems, and matrices are all
connected.

Equivalence Theorem for Span: The following are equivalent:

• (1) Ax = b has a solution for EVERY column vector b.

• (2) If you row reduced A (just A, not the whole augmented matrix) to reduced row-
echelon form, there is a pivot in every row.

• (3) Every column vector b is in the span of the columns of A (so that the span of the
columns of A is Rm, where m is the number of equations).

The fact that these are equivalent means that if any one of these statements is
true, they are all true and if any one of these statements is false, they are all
false. Let’s illustrate this through some simple examples.

Example 1 (all three statements are true):

Suppose that we consider the coefficient matrix

A =

[
1 2
−1 1

]
We claim that for this matrix A, all three statements above are true.

• Let us first check that (2) is true. If we row reduce just A, we get[
1 2
−1 1

]
=⇒

[
1 2
0 3

]
=⇒

[
1 2
0 1

]
=⇒

[
1 0
0 1

]
So the reduced row-echelon form of A (and JUST A, not the whole augmented matrix)
has a pivot in every row. This is (2), so (2) is true.

• We can also see (1) is true. Why is this so? Well, if b = (b1, b2) is anything, then
we get after row reducing to reduced-row echelon form (for the AUGMENTED matrix
now) [

1 0 | ∗
0 1 | ∗

]
where * denote some numbers (specifically, if you do the calculation out), from the
augmented matrix, you get
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[
1 2 | b1
−1 1 | b2

]
=⇒

[
1 2 | b1
0 3 | b1 + b2

]
=⇒

[
1 2 | b1
0 1 | 1

3
b1 + 1

3
b2

]
=⇒

[
1 0 | 1

3
b1 − 2

3
b2

0 1 | 1
3
b1 + 1

3
b2

]
So we can see that no matter what b = (b1, b2) is, there is always a solution to Ax = b
(so (1) is true).

• Then finally, (3) is true since the system of equations Ax = b is the same as

x1

[
1
−1

]
+ x2

[
2
1

]
=

[
b1
b2

]
So the fact that (1) is true (Ax = b has a solution for every b) shows that b is a linear
combination of (1, -1) and (2, 1) for every b = (b1, b2) in R2. So (3) is true. So we see
that for this example, all of (1), (2), and (3) are all true.

Example 2 (all three statements are false):

Now consider the coefficient matrix

A =

[
1 2
2 4

]

• (2) is false. If we row-reduce JUST the matrix A (not the augmented matrix), we get
the following reduced row-echelon form[

1 2
0 0

]
and note that there is no pivot in the second row, so (2) is false.

• We can then see that (1) is false. So it is not true that Ax = b has a solution for
every b. This is not to say that Ax = b always has no solutions. It just means that
not every b will give a consistent system for Ax = b. In particular, we can choose
some b for which Ax = b does not have a solution. To see this, note that since the
row-reduced echelon form of A is [

1 2
0 0

]
the row-reduced echelon form of any augmented matrix for Ax = b is[

1 2 | ∗
0 0 | ∗

]
or more explicitly

[
1 2 | b1
0 0 | b2 − 2b1

]
where * can be any numbers. Now, if we choose b = (b1, b2) so that the bottom * ends
up being a zero (in particular, if b2 = 2b1), we would indeed have a consistent system
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(with infinitely many solutions). But the reason (2) is false here is because we could
also choose b so that the bottom * ends up being nonzero, so that our system has no
solutions. So for this particular choice of b, Ax = b would have no solutions. So it is
not true that Ax = b has solutions for every b.

• Then, (3) is false. Because for the specific b for which Ax = b has no solutions, we
have that the vector form of the system

x1

[
1
2

]
+ x2

[
2
4

]
=

[
b1
b2

]
has no solutions for this particular b = (b1, b2), so that this particular b is not in the
span of the columns of A, so in particular the span of the columns of A is not all of
R2.

These examples show the equivalence of (1), (2), and (3). Either all three conditions are
true, or all three conditions are false. There are no other possibilities.

In particular, why is this theorem useful? We can use it to show that the span of vectors
is or is not all of Rm, or we can use it to show that Ax = b does have a solution for every
b or not. In particular, we can reduce both of these questions to row-reducing a
matrix A to reduced row-echelon form.

Linear Independence

We say that the vectors v1, v2, ..., vk are linearly independent if

c1v1 + c2v2 + ... + ckvk = 0

implies that c1 = c2 = ... = ck = 0.

If c1v1 + c2v2 + ... + ckvk = 0 for ci not all equal to zero, then the vectors v1, v2, ..., vk

are linearly dependent.

Example:

• (1, 0) and (0, 1) are linearly independent in R2.

• (1, 1,−1), (2, 1, 0), and (0,−1,−3) are linearly independent in 3.

• (2, 4) and (−1,−2) are linearly dependent in R2.

• (2, 4), (−1,−2), and (1, 3) are linearly dependent in R2.

• (1, 1,−1), (2, 1, 0) and (0,−1, 2) are linearly dependent in R3.

• If any of the vectors v1,v2, ...,vk is zero, then the vectors are linearly dependent.
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Just as we had an equivalence theorem for span, we can reinterpret linear independence
also in terms of systems. In particular, we have the following equivalence theorem for linear
independence, which relates linear independence of vectors to uniqueness of solutions to
systems of equations to matrix operations.

Equivalence Theorem for Linear Independence: The following conditions are equiva-
lent (either all true or all false):

• (1) Ax = 0 has a unique solution.

• (2) If you row reduced A (just A, not the whole augmented matrix) to reduced row-
echelon form, there are no free columns.

• (3) The columns of A are linearly independent.

This reduces the problem of whether a homogeneous system is unique, and
the problem of whether given vectors are linearly independent to row-reduction
of a matrix to reduced row-echelon form.

Problem 1

Show that if k > n, then any k vectors v1,v2, ...,vk in Rn are linearly dependent in Rn.
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