Math 54: Linear Algebra and Differential Equations

Jeffrey Kuan

July 8, 2019

1 Review

Recall that a vector space over \mathbb{R} is an abstract set of objects called vectors, equipped with the operations of vector addition and multiplication by scalars (real numbers) that satisfy given properties (the most important of which are that the vector space is closed under vector addition and scalar multiplication).

We then discussed functions that map between vector spaces. Let V and W be vector spaces over \mathbb{R}. A function $f: V \rightarrow W$ is called a linear transformation if

$$
f\left(c_{1} u+c_{2} v\right)=c_{1} f(u)+c_{2} f(v)
$$

for all vectors u, v in V and for all real numbers c_{1} and c_{2}.
We then defined the kernel and range of a linear transformation $f: V \rightarrow W$.

- Recall that the kernel of a linear transformation is the set of vectors v in V such that $f(v)=0$, where 0 here denotes the zero vector in W.
- The range of a linear transformation is the set of vectors w in W such that there is a vector v in V with $f(v)=w$.

Example 1.1. Consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
T\left(x_{1}, x_{2}\right)=2 x_{1}-x_{2}
$$

- The kernel is the set of $\left(x_{1}, x_{2}\right)$ such that $T\left(x_{1}, x_{2}\right)=2 x_{1}-x_{2}=0$. So we see that the kernel is all vectors of the form $(s, 2 s)$ where s is a real number.
- The range is the set of all real numbers that can be obtained as $2 x_{1}-x_{2}$ from some $\left(x_{1}, x_{2}\right)$. But given any real number c, note that $T(0,-c)=c$. So every real number is in the range. So the range is all real numbers.

Example 1.2. Consider the linear transformation, $\operatorname{tr}: M_{3 \times 3} \rightarrow \mathbb{R}$, given by the trace.

- The kernel is the set of matrices that have zero trace. For example, $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 2 \\ 1 & 3 & 0\end{array}\right]$ is in the kernel.
- The range is all real numbers. This is because given any real number c,

$$
\operatorname{tr}\left(\left[\begin{array}{lll}
c & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right)=c
$$

2 One-to-One and Onto

There are two natural questions we can ask about functions. First, does every element get mapped to a unique value (one-to-one)? And second, does the function map onto every element in the set of potential values (onto)? We can consider these notions for a linear transformation.
Definition: Let $f: V \rightarrow W$ be a linear transformation between two vector spaces.

- f is one-to-one if $f\left(v_{1}\right)=f\left(v_{2}\right)$ implies that $v_{1}=v_{2}$.
- f is onto if for every vector w in W, there is v in V such that $f(v)=w$.

These definitions conceptually make sense. But they can be difficult to use. The following conditions are much more useful.

- $f: V \rightarrow W$ is one-to-one if and only if $\operatorname{ker}(f)=\{0\}$. (The only element in the kernel of f is the zero vector in V.)
- $f: V \rightarrow W$ is onto if and only if range $(f)=W$. (Every vector in W is in the range of f.

Example 2.1. The map $T\left(x_{1}, x_{2}\right)=2 x_{1}-x_{2}$ from \mathbb{R}^{2} to \mathbb{R} is not one-to-one, but it is onto. The trace $\operatorname{tr}: M_{3 \times 3} \rightarrow \mathbb{R}$ is not one-to-one, but it is onto.

A linear transformation $f: V \rightarrow W$ that is both one-to-one and onto is bijective. A bijective linear transformation associates elements in V and elements in W in a nice way, where every vector in V is associated to a vector in W and every vector in W is associated to a vector in V. This means that the linear transformation gives a "translation" between vectors in V and vectors in W.

For a bijective linear transformation $f: V \rightarrow W$, we can define the inverse linear transformation $f^{-1}: W \rightarrow V$, where

$$
f^{-1}(w)=v \text { if and only if } f(v)=w
$$

So in essence, f^{-1}, if you give it w in W, tells you which vector v in V gets mapped to it by f. So f^{-1} undoes f. In particular,

$$
f^{-1} \circ f=f \circ f^{-1}=\operatorname{Id}
$$

where Id : $V \rightarrow V$ is the identity linear transformation.

Problem 1

Show that the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

is bijective and find T^{-1}.

Problem 2

Show that the transpose linear transformation $t: M_{2 \rightarrow 2} \rightarrow M_{2 \rightarrow 2}$ is bijective and find t^{-1}.

3 Subspaces of Vector Spaces

Recall that we defined a vector space as an abstract set with vectors, vector addition, and scalar multiplication that satisfied the following properties.

- V is closed under addition, so $\mathbf{u}+\mathbf{v}$ is in V, whenever \mathbf{u} and \mathbf{v} are.
- Addition of vectors is commutative: $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
- Addition of vectors is associative: $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
- There is some zero vector $\mathbf{0}$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$
- Every vector \mathbf{u} has an additive inverse $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=0$
- For every scalar (real number) c and every vector $\mathbf{u}, c \mathbf{u}$ is in V.
- The distributive property for scalar multiplication holds: $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
- $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
- $c(d \mathbf{u})=(c d) \mathbf{u}$
- $1 \mathbf{u}=\mathbf{u}$

When we define a mathematical structure, we are usually interested in "nested" instances of that structure. In particular, is it possible for a vector space to have a vector space inside of it?

Definition: A subspace is a subspace of a vector space that is also a vector space.
Note that if you have a subset of a vector space, that subset inherits most of the properties above from the vector space that it is sitting in. In particular, to check that something is a subspace we only need to check the following condition.

Important Result: If U is a subset of a vector space V, then U is a subspace of V if for each u_{1}, u_{2} in $U, c_{1} u_{1}+c_{2} u_{2}$ is in U too, where c_{1} and c_{2} are arbitrary real numbers.

Examples of Subspaces:

- Recall that $M_{3 \times 3}$, the set of 3 by 3 matrices is a vector space. The subset Sym $_{3 \times 3}$ of symmetric 3 by 3 matrices is a subspace of $M_{3 \times 3}$, since for any two symmetric matrices A and $B, c_{1} A+c_{2} B$ is still a symmetric matrix.
- Recall that \mathbb{R}^{3} is a vector space. Then, the set S of vectors $\left(x_{1}, x_{2}, 0\right)$ in \mathbb{R}^{3} is a subspace of \mathbb{R}^{3}, since

$$
c_{1}\left(a_{1}, a_{2}, 0\right)+c_{2}\left(b_{1}, b_{2}, 0\right)=\left(c_{1} a_{1}+c_{2} b_{1}, c_{1} a_{2}+c_{2} b_{2}, 0\right)
$$

is still in S (since the last coordinate is still zero).

- Recall that P_{n} is a vector space. The set of polynomials with constant term equal to zero is a subspace, since $c_{1} p(x)+c_{2} q(x)$ has constant term equal to zero if $p(x)$ and $q(x)$ have constant term equal to zero.
- Every vector space is a subspace of itself.
- Let $\{0\}$ be the set of just the zero vector. Then $\{0\}$ is a subspace of any vector space. It is called the trivial (zero) subspace.
- The set of vectors in \mathbb{R}^{3} with first coordinate equal to 1 is not a subspace of \mathbb{R}^{3}, since $2(1,1,1)=2(1,1,1)+0(1,1,1)=(2,2,2)$ which is a vector that does not have first coordinate equal to 1 .

