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More About Symmetric Matrices

As a review from last time, let’s begin by orthogonally diagonalizing a symmetric matrix.

Problem 1

Orthogonally diagonalize the symmetric matrix

A =

 1 −1 1
−1 1 1
1 1 1


We know that a symmetric matrix has n real eigenvalues counted with multiplicity. It

turns out that there is a nice characterization of the largest and smallest eigenvalue of a
symmetric matrix A. It is given by the Rayleigh principle, which you will prove in Problem
Set 9.

Rayleigh principle: Let A be an n by n symmetric matrix. Let λmin and λmax denote the
smallest and largest eigenvalue of A. Then,

λmin = minv∈Rn,v 6=0
〈Av, v〉
〈v, v〉

λmax = maxv∈Rn,v 6=0
〈Av, v〉
〈v, v〉

Note that the minimum for λmin is attained exactly when v is an eigenvector for λmin and the
maximum for λmax is attained exactly when v is an eigenvector for λmax.

Example: As an example, let us use the Rayleigh principle to calculate the eigenvalues of

A =

[
1 1
1 1

]
which is clearly a symmetric matrix. We calculate for v = (x, y)

Av =

[
x+ y
x+ y

]
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〈Av, v〉 = x2 + 2xy + y2 = (x+ y)2

〈v, v〉 = x2 + y2

So we have that
〈Av, v〉
〈v, v〉

=
(x+ y)2

x2 + y2
= 1 +

2xy

x2 + y2

Note that |2xy| ≤ x2 +y2, so −1 ≤ 2xy
x2+y2

≤ 1. We have 2xy
x2+y2

= 1 when x = y and 2xy
x2+y2

= −1
when x = −y.

So we see that

λmin = minv∈Rn,v 6=0
〈Av, v〉
〈v, v〉

= 0 attained for v = (x, y) where x = −y

λmax = maxv∈Rn,v 6=0
〈Av, v〉
〈v, v〉

= 2 attained for v = (x, y) where x = y

This shows that the eigenvalues of A are λ = 0 and λ = 2.

Problem 2

Let n be an even positive number. Consider the n by n matrix A where every entry is equal
to 1. Show that λmin ≤ 0 and λmax ≥ n.

Positive Definite and Positive Semidefinite Matrices

Now that we know the spectral theorem for symmetric matrices and Rayleigh’s principle, we
can talk about an important class of matrices that are important in applications to machine
learning, AI, and data science. These are called positive definite and positive semidefinite
matrices.

Definition: A positive definite matrix is an n by n symmetric matrix A such that
〈Av, v〉 > 0 for all nonzero vectors v ∈ Rn. A positive semidefinite matrix is an n by
n symmetric matrix A such that 〈Av, v〉 ≥ 0 for all nonzero vectors v in Rn. (Note that every
positive semidefinite matrix is also positive definite.)

Note that by Rayleigh’s principle, we have that for a positive definite matrix, λmin > 0,
since

〈Av, v〉
〈v, v〉

> 0 for all nonzero v ∈ Rn

and for a positive semidefinite matrix, λmin ≥ 0, since

〈Av, v〉
〈v, v〉

≥ 0 for all nonzero v ∈ Rn

So here is another characterization of positive definite and positive semidefinite matrices. A
positive definite matrix is a symmetric matrix where all eigenvalues are positive. A positive
semidefinite matrix is a symmetric matrix where all eigenvalues are nonnegative.
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Problem 3

Positive semidefinite matrices have nice properties. For example, show the following property:
given a positive semidefinite A, there exists another positive semidefinite matrix B such that
A = B2 (so that B is like the square root of A). This is the matrix analogue of the fact that
every nonnegative number has a square root.

Problem 4

Determine which of the following matrices are positive definite and positive semidefinite.

A =

0 0 0
0 3 −1
0 −1 3

 B =

 2 −1 0
−1 2 −1
0 −1 2


Finally, we discuss an easy criterion to determine whether a given matrix is positive definite

or not. In principle, we could determine whether a matrix is positive definite simply by
calculating its characteristic polynomial, finding all n real roots of this polynomial (which
are the eigenvalues), and then checking to see if all eigenvalues are positive. However, this
takes a lot of time. There is a much simpler criterion to check whether a symmetric matrix
is positive definite, which is called Sylvester’s criterion. A n by n symmetric matrix is
positive definite if and only if the determinant of every j by j submatrix in the upper left
corner of the matrix is positive, for each 1 ≤ j ≤ n.

For example, we can check that B is positive definite since

|2| = 2 > 0

∣∣∣∣ 2 −1
−1 2

∣∣∣∣ = 3 > 0

∣∣∣∣∣∣
2 −1 0
−1 2 −1
0 −1 2

∣∣∣∣∣∣ = 4 > 0

so Sylvester’s criterion shows that B is positive definite. Meanwhile, A is not positive definite
since the determinant of the 1 by 1 upper left submatrix [0] is not positive.

Interestingly, there is no analogue of Sylvester’s criterion for positive semidefinite matrices
(Problem Set 9). So to check whether a matrix is positive semidefinite, you must actually
compute all eigenvalues and check that they are all nonnegative, or check that 〈Av, v〉 ≥ 0 for
all nonzero v ∈ Rn.
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