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Least Squares

Earlier in this class, we considered the problem of finding a solution to the system of equations
Ax = b. We called such a system consistent if there was at least one solution, and we called
such a system inconsistent if it did not have a solution. We learned how to find all solutions
of a consistent solution, and in the case of an inconsistent solution, we simply said there was
no solution.

But what if we wanted to say more in the case of an inconsistent system Ax = b? In this
case, there is no vector x that gives Ax = b, but can we maybe find some vector x̂ that gives
the best possible approximation to a solution to Ax = b, an “almost solution” of sorts?

This is the idea behind least squares. Let A be an m by n matrix. We will say that x̂ is a
least squares solution or least squares best approximation to the system Ax = b if

||Ax̂− b|| ≤ ||Ax− b|| for all x ∈ Rn

We call ||Ax̂−b|| the least squares distance. Intuitively, this means that x̂ makes Ax̂ as close
as possible to b, so that even if Ax̂ is not equal to b, the least squares solution has Ax̂ as
close to b as possible. This shortest distance is exactly the least squares distance.

Here are some important remarks about the least square solution.

• If Ax = b is a consistent system, then the set of least square solutions is just the set
of solutions, since the left hand side in the above inequality can be as small as possible
(equal to 0 in this case) precisely when x̂ is a solution to the consistent system.

• Note that there may be many possible least squares approximations to Ax = b. This is
precisely the case when the homogeneous Ax = 0 has infinitely many solutions, because
if xh is a solution to the homogeneous equation, then Ax = A(x + xh).

The definition of the least squares solution above says that to find a least square solution,
we must minimize the distance between the fixed vector b and the subspace of all possible
Ax, which as we already discussed earlier in the class is exactly the column space of A. So
in particular, we want to minimize the distance from b to Col(A). We can do this by using
orthogonal projection.
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In particular, we should set
Ax̂ = projCol(A)(b) (1)

Then, the set of all x̂ that satisfy the above system is the set of least squares solutions to
Ax = b. We will call equation (1) the associated least squares system for the system
Ax = b. Solving the system of equations (1) gives all least squares solutions.

Note that by the definition of orthogonal projection, this equation also implies that

Ax̂− b is orthogonal to Col(A)

In particular, this means the dot product of each column of A with Ax̂ − b is zero, or
equivalently, the dot product of each row of At with Ax̂− b is zero. So in particular, x̂ being
a least squares solution to Ax = b is equivalent to

At(Ax̂− b) = 0

So the set of least squares solutions x̂ to Ax = b is also the solutions to the system

AtAx = Atb (2)

The system of equations in (2) is called the normal system of equations for the system
Ax = b. It is easier to use the normal system rather than the associated system to calculate
least squares solutions, since the normal equations involve just matrix multiplication with
At while the associated system requires calculating an orthogonal projection. However, both
would still give the same answer.

As a final note, it is interesting to ask when the least squares solution to Ax = b is unique.
If such a least squares solution is unique, it means that the associated system (1) and the
normal system (2) will have unique solutions. Using (2), this means that AtA is invertible (we
can talk about invertibility here since AtA is a square matrix, though A might not necessarily
be a square matrix). Thus, we discover the following important fact: Ax = b has a unique
least squares solution precisely when the square matrix AtA is invertible.

Problem 1

Find a least squares solution to the system Ax = b, where

A =

1 1 1 1
1 −1 0 1
0 2 1 0

 b =

 2
1
−1


What is the least squares distance?

Problem 2

Find a least squares solution to the system Ax = b, where

A =

 1 1
−1 2
2 −1

 b =

 1
−1
0


What is the least squares distance?
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Spectral Theorem for Symmetric Matrices

Now that we know the ideas of orthonormality and inner products, we can now consider
one of the most fundamental theorems in linear algebra, the spectral theorem for symmetric
matrices. Recall that diagonalization is useful because it allows us to compute powers of a
matrix easily, and it gives us a nice basis of eigenvectors in which it is easy to understand the
action of a diagonalizable linear operator T . But it is a surprising fact that every symmetric
matrix multiplication operator on Rn is diagonalizable, and more specifically, it is orthogonally
diagonalizable.

A symmetric operator on Rn is a linear operator T : Rn → Rn such that

〈Tv, w〉 = 〈v, Tw〉

for every vector v, w ∈ Rn. As you showed (or will show) on Problem Set 8, such a transfor-
mation can really be thought of as a matrix multiplication map where the matrix A that we
are multiplying by is symmetric. So we will focus on symmetric matrix multiplication maps,
given by

T (v) = Av

for v ∈ Rn, where A is a symmetric n by n matrix. In matrix form, we have the above identity
in the following form.

〈Av,w〉 = 〈v,Aw〉

for a symmetric n by n matrix A and v, w ∈ Rn.

We will first show the following fundamental fact: Any two eigenvectors of a symmetric
matrix A with different eigenvalues are orthogonal. To see this, if v and w are eigenvectors
for distinct eigenvalues λ1 and λ2, then

〈Av,w〉 = λ1〈v, w〉 = 〈v,Aw〉 = λ2〈v, w〉

so since λ1 6= λ2 and λ1〈v, w〉 = λ2〈v, w〉, we have that 〈v, w〉 = 0. So v and w are orthogonal.

This means that the eigenspaces Wλ1 and Wλ2 for distinct eigenvalues are orthogonal,
and from our discussion of diagonalization, we know they are also linearly independent. In
particular, two vectors from distinct eigenspaces are always orthogonal.

Therefore, if we calculate all of the eigenspaces for an n by n symmetric matrix A, we have
that all of the eigenspaces are mutually orthogonal subspaces in Rn. The last question that
is left to answer is: Do all of the eigenspaces of the symmetric n by n matrix A span Rn? Or
equivalently, is A diagonalizable?

A fact is that every symmetric n by n matrix A is diagonalizable (so all geometric multi-
plicities are equal to the algebraic multiplicities for each eigenvalue), with n real eigenvalues
(counted with multiplicity). This leads to the spectral theorem for symmetric matrices.

Spectral Theorem for Symmetric Matrices: Let A be an n by n symmetric matrix.

• A is diagonalizable, and has n real eigenvalues (counted with multiplicity, either algebraic
or geometric since they are equal for a diagonalizable matrix).
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• The eigenspaces of A for distinct eigenvalues are mutually orthogonal and span Rn.

• There exists an orthonormal basis v1, v2, ..., vn of eigenvectors of A for Rn.

• A can be diagonalized orthogonally as A = ODOt, where D is a diagonal matrix of the
eigenvalues and O is an orthogonal matrix.

Since the eigenspaces of A are mutually orthogonal, this means that eigenvectors for dif-
ferent eigenvalues are orthogonal and linearly independent from each other. So if we find an
orthonormal basis for each eigenspace and combine all of these orthonormal bases together,
then we get an orthonormal basis for Rn consisting of eigenvectors of A.

Recall that by diagonalization, we can write A = PDP−1, where P is a matrix where
the columns of P are the eigenvectors in the basis of eigenvectors. In this case, there is an
orthonormal basis of eigenvectors which will then go into the columns of P . So the columns of
P form an orthonormal basis for Rn, and thus P by definition is an orthogonal matrix. Thus,
P−1 = P t. So if we denote the matrix P instead by O (since it is an orthogonal matrix), we
have that A = ODOt, where O is the change of basis matrix from the orthonormal basis for
Rn to the standard basis.
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