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The Transpose of an Abstract Linear Transformation

Finally, we will use the Riesz representation theorem to define the transpose of an abstract
linear transformation T : V → W , where V and W are finite dimensional inner product spaces
(so Euclidean spaces). This is different from the matrix transpose, since we are considering
the transpose of an arbitrary abstract linear transformation (which is not necessarily given by
a matrix multiplication transformation).

Given any linear transformation T : V → W , we will define a transpose linear trans-
formation T t : W → V as follows. Note that given any w ∈ W , the map

`w(v) = 〈Tv, w〉

is a linear transformation from Rn to R so it is a linear functional. Then, by the Riesz
representation theorem,

`w(v) = 〈Tv, w〉 = 〈v, u〉

for some unique vector u ∈ V . We define u = T t(w) where we can define the transpose this
way since for every w, such a vector u exists and is unique. So we can define the transpose
T t : W → V as the unique map satisfying

〈Tv, w〉 = 〈v, T tw〉

for every v ∈ V , w ∈ W .

Problem 1

Consider the linear transformation T : R4 → R2 given by

T (x1, x2, x3, x4) = (x1 + x2, x3 − x4)

Find T t(2, 1). Then, find a formula for T t(y1, y2).
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Least Squares

Earlier in this class, we considered the problem of finding a solution to the system of equations
Ax = b. We called such a system consistent if there was at least one solution, and we called
such a system inconsistent if it did not have a solution. We learned how to find all solutions
of a consistent solution, and in the case of an inconsistent solution, we simply said there was
no solution.

But what if we wanted to say more in the case of an inconsistent system Ax = b? In this
case, there is no vector x that gives Ax = b, but can we maybe find some vector x̂ that gives
the best possible approximation to a solution to Ax = b, an “almost solution” of sorts?

This is the idea behind least squares. Let A be an m by n matrix. We will say that x̂ is a
least squares solution or least squares best approximation to the system Ax = b if

||Ax̂− b|| ≤ ||Ax− b|| for all x ∈ Rn

We call ||Ax̂−b|| the least squares distance. Intuitively, this means that x̂ makes Ax̂ as close
as possible to b, so that even if Ax̂ is not equal to b, the least squares solution has Ax̂ as
close to b as possible. This shortest distance is exactly the least squares distance.

Here are some important remarks about the least square solution.

• If Ax = b is a consistent system, then the set of least square solutions is just the set
of solutions, since the left hand side in the above inequality can be as small as possible
(equal to 0 in this case) precisely when x̂ is a solution to the consistent system.

• Note that there may be many possible least squares approximations to Ax = b. This is
precisely the case when the homogeneous Ax = 0 has infinitely many solutions, because
if xh is a solution to the homogeneous equation, then Ax = A(x + xh).

The definition of the least squares solution above says that to find a least square solution,
we must minimize the distance between the fixed vector b and the subspace of all possible
Ax, which as we already discussed earlier in the class is exactly the column space of A. So
in particular, we want to minimize the distance from b to Col(A). We can do this by using
orthogonal projection.

In particular, we should set
Ax̂ = projCol(A)(b) (1)

Then, the set of all x̂ that satisfy the above system is the set of least squares solutions to
Ax = b. We will call equation (1) the associated least squares system for the system
Ax = b. Solving the system of equations (1) gives all least squares solutions.

Note that by the definition of orthogonal projection, this equation also implies that

Ax̂− b is orthogonal to Col(A)

In particular, this means the dot product of each column of A with Ax̂ − b is zero, or
equivalently, the dot product of each row of At with Ax̂− b is zero. So in particular, x̂ being
a least squares solution to Ax = b is equivalent to

At(Ax̂− b) = 0
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So the set of least squares solutions x̂ to Ax = b is also the solutions to the system

AtAx = Atb (2)

The system of equations in (2) is called the normal system of equations for the system
Ax = b. It is easier to use the normal system rather than the associated system to calculate
least squares solutions, since the normal equations involve just matrix multiplication with
At while the associated system requires calculating an orthogonal projection. However, both
would still give the same answer.

As a final note, it is interesting to ask when the least squares solution to Ax = b is unique.
If such a least squares solution is unique, it means that the associated system (1) and the
normal system (2) will have unique solutions. Using (2), this means that AtA is invertible (we
can talk about invertibility here since AtA is a square matrix, though A might not necessarily
be a square matrix). Thus, we discover the following important fact: Ax = b has a unique
least squares solution precisely when the square matrix AtA is invertible.

Problem 2

Find a least squares solution to the system Ax = b, where

A =

1 1 1 1
1 −1 0 1
0 2 1 0

 b =

 2
1
−1


What is the least squares distance?

Problem 3

Find a least squares solution to the system Ax = b, where

A =

 1 1
−1 2
2 −1

 b =

 1
−1
0


What is the least squares distance?
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