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Isometries

Recall that in the previous unit, we considered abstract linear transformations between ab-
stract vector spaces. The notion of equivalence for these was a bijective linear transformation,
which identifies the two vector spaces as essentially the “same”. For abstract inner product
spaces, there will be a general notion of equivalence too.

If T : V → W is an abstract linear transformation between two inner product spaces V
and W , we say that T is an isometry (or an isometric linear transformation if T is
bijective and if T also preserves inner products in the sense that

〈Tv, Tw〉W = 〈v, w〉V for all v, w ∈ V

We will specialize to the case where V = W = Rn for now, but later, when we study
Fourier series, we will consider the very interesting case where T is given by the Fourier series
map, V = L2([0, 2π]) and W = `2(Z).

Problem 1

Show that the identity transformation I : R2 → R2 is an isometry. Then, show that the
following maps

T1(x1, x2) = (x2, x1)

T2(x1, x2) =

[
1√
2

1√
2

− 1√
2

1√
2

] [
x1
x2

]
are also isometries of R2.

Important: Problem 2

Prove that a linear transformation T : Rn → Rn is an isometry if and only if it sends an
orthonormal basis to another orthonormal basis.

This last result is important because it allows us to characterize all isometries on Rn. In
particular, every linear transformation in Rn is given by a matrix multiplication map by some
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n by n matrix A. (This is a variant of the L(Rn,R) question in Problem Set 6). Recall that
in Rn, the standard basis is an orthonormal basis for Rn and if T : Rn → Rn is given by
multiplication by an n by n matrix A, then the standard basis is sent to the columns of A.
(So T (1, 0, 0, ..., 0) = first column of A, T (0, 1, 0, ..., 0) = second column of A), etc.). So by
Problem 2 above, T is an isometry when the standard basis is sent to an orthonormal basis,
namely when the columns of A form an orthonormal basis for Rn.

So a matrix multiplication map Rn → Rn is an isometry precisely when the columns of A
form an orthonormal basis. By using the definition of an orthonormal basis and the definition
of matrix multiplication, this means that

ATA = I

so that AT = A−1. So ATA = AAT = I for an isometric matrix multiplication map. We call
a matrix A such that ATA = AAT = I an orthogonal matrix. So any isometry in Rn is
given by matrix multiplication by an orthogonal matrix.

Problem 3

Check that

T (x1, x2) =

[
cos(α) −sin(α)
sin(α) cos(α)

]
for any fixed α is an isometry of R2. Describe this isometry geometrically.

The Riesz Representation Theorem

Recall Problem 4 in Problem Set 6, where you found L(Rn,R), which recall is the set of
linear transformations from Rn to R. A linear transformation from Rn to R is called a linear
functional of Rn.

We saw in that question that any given linear functional ` : Rn → R on Rn is of the form

`(v) = 〈v, w〉

for some fixed vector w ∈ Rn, and conversely, an such map is a linear functional on Rn. This
leads to the Riesz representation theorem.

Riesz Representation Theorem: Any linear functional on Rn is given by a dot product
with a unique fixed vector w in Rn.

As a remark, the Riesz Representation Theorem also holds for L2([0, 1]) and `2(Z) with
the added assumption that the linear function is a continuous map (but this is beyond the
scope of this class).

(Important) Proof: While the proof in Problem Set 6 works, it is not very illuminating.
Consider the following abstract proof. Let us first show existence.

Let ` : Rn → R be any linear functional. If ` is the zero functional, we are done since
`(v) = 0 = 〈v, 0〉. So assume ` is nonzero. Then rank(`) = 1 and the kernel of `, which we

2



denote by W = ker(`) has dimension n−1. Let u1, u2, ..., un−1 be an orthonormal basis for W .
Let un be a basis for the one-dimensional space W⊥. Then, u1, u2, ..., un is an orthonormal
basis for Rn. Since V = W ⊕W⊥, the only vector in both W = ker(`) and W⊥ is the zero
vector, so un is not in W = ker(`).

Let c = `(un) 6= 0 (since un is not in the kernel of `). Take w = cun. Then indeed,

`(un) = 〈un, w〉 = c〈un, un〉 = c

as desired, and for i = 1, 2, ..., n− 1, since un ∈ ker(`), we indeed have

`(un) = 〈un, w〉 = c〈un, ui〉 = c · 0 = 0

as desired, where we used the orthonormality of u1, u2, ..., un. Since ` and the map T (v) =
〈v, w〉 agree on the orthonormal basis u1, u2, ..., un, they are equal. So `(v) = 〈v, w〉.

For uniqueness, if `(v) = 〈v, w1〉 = 〈v, w2〉, we want to show w1 = w2. But then, by
bilinearity,

〈v, w1 − w2〉 = 0

for all vectors v. Taking v = w1 − w2, we get

〈w1 − w2, w1 − w2〉 = 0

so by positive definiteness, w1 − w2 = 0 so w1 = w2, which shows uniqueness.

Problem 3

Suppose that ` : R3 → R is a linear functional with `(1, 1, 0) = 2, `(1, 3, 0) = −1, and
`(−2, 2, 1) = −3. Find `(68, 71, 26).

The Transpose of an Abstract Linear Transformation

Finally, we will use the Riesz representation theorem to define the transpose of an abstract
linear transformation T : V → W , where V and W are finite dimensional inner product spaces
(so Euclidean spaces). This is different from the matrix transpose, since we are considering
the transpose of an arbitrary abstract linear transformation (which is not necessarily given by
a matrix multiplication transformation).

Given any linear transformation T : V → W , we will define a transpose linear trans-
formation T t : W → V as follows. Note that given any w ∈ W , the map

`w(v) = 〈Tv, w〉

is a linear transformation from Rn to R so it is a linear functional. Then, by the Riesz
representation theorem,

`w(v) = 〈Tv, w〉 = 〈v, u〉
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for some unique vector u ∈ V . We define u = T t(w) where we can define the transpose this
way since for every w, such a vector u exists and is unique. So we can define the transpose
T t : W → V as the unique map satisfying

〈Tv, w〉 = 〈v, T tw〉

for every v ∈ V , w ∈ W .

Problem 4

Consider the linear transformation T : R4 → R2 given by

T (x1, x2, x3, x4) = (x1 + x2, x3 − x4)

Find T t(2, 1). Then, find a formula for T t(y1, y2).
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