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Inner Product Spaces

Remember that linear algebra is the study of algebraic structure. The structure that we have been
considering so far has been the structure of a vector space over R. But in many ways, we see that this
structure does not complete encompass all the properties we might want about a vector space. For
example, consider R2. Even though B1 = {(1, 0), (0, 1)} and B2 = {(1, 1), (2, 1)} are both bases, in
some sense, we prefer B1 because the vectors are at right angles to each other. In particular, Rn has
an additional structure, where we can measure lengths and angles. So we will consider the structure
of an inner product space over R.

Definition: An inner product space over R is a vector space over R equipped with a bilinear form
〈·, ·〉 : V × V → R called an inner product that satisfies the following properties.

• 〈c1v1 + c2v2, w〉 = c1〈v1, w〉+ c2〈v2, w〉

• 〈v, c1w1 + c2w2〉 = c1〈v, w1〉+ c2〈v, w2〉 (bilinearity)

• 〈v, v〉 ≥ 0, where 〈v, v〉 = 0 if and only if v = 0 (positive definite)

• 〈v, w〉 = 〈w, v〉 (symmetry of the inner product)

Given an inner product space, we have a natural notion of length. We define for each vector v the
norm of the vector ||v||, which in some sense gives the “length” of the vector. The norm is defined by

||v|| = 〈v, v〉1/2

We can take a square root on the right hand side by the positive definiteness of the inner product,
which ensures that 〈v, v〉 ≥ 0. Using the norm, we can define the distance between two vectors u
and v as ||u − v||. Given any nonzero vector v, the vector of length 1 that points in the direction of
v, defined as v

||v|| is called the unit vector in the direction of v.

Given an inner product space, we also have a natural notion of angle. The angle θ between two
vectors is the θ value between 0 and π radians such that

cos(θ) =
〈v, w〉
||v|| · ||w||

In particular, note that if θ = π
2

(a right angle), then 〈v, w〉 = 0. In particular, we say that two vectors
u and v are orthogonal if and only if 〈u, v〉 = 0.
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For any inner product space, we have the following three fundamental properties. First, the Tri-
angle Inequality:

||u+ v|| ≤ ||u||+ ||v||

and the Cauchy-Schwarz Inequality:

|〈u, v〉| ≤ ||u||||v||

where we have equality if and only if u and v are scalar multiplies of each other. The Cauchy-Schwarz
inequality is easily seen to be consistent with the definition of angle above. Finally, we have the
Pythagorean Theorem, which states that

||u+ v||2 = ||u||2 + ||v||2 if and only if u and v are orthogonal

Some examples of inner product spaces are as follows.

Example: Rn equipped with the dot product, given by

v · w = 〈v, w〉 = v1w1 + v2w2 + ...+ wnwn

Example: `2(Z), the set of all two-sided real valued infinite sequences ..., a−2, a−1, a0, a1, a2, ... with∑
n∈Z

|an|2 <∞

The natural inner product here for two sequences a = ..., a−2, a−1, a0, a1, a2, ... and b = ..., b−2, b−1, b0, b1, b2, ...
is

〈a,b〉 =
∑
n∈Z

anbn

This is an infinite dimensional inner product space.

Example: L2([0, 1]) is the set of all real-valued square integrable functions on [0, 1], meaning all
functions f defined on [0, 1] such that ∫ 1

0

|f(x)|2dx <∞

This is an inner product space over R with the inner product

〈f, g〉 =

∫ 1

0

f(x)g(x)dx

This is an infinite dimensional inner product space. What does the Cauchy-Schwarz inequality say
in this case? Check that f(x) = 1/2 − x and g(x) = (1/2 − x)2 are orthogonal in this inner product
space.

More on Orthogonality

We will restrict our attention to Rn, or more generally, finite-dimensional inner product spaces. Recall
that given an inner product space, we have a notion of perpendicularity or equivalently orthogonality,
where 〈v, w〉 = 0 if and only if v and w are orthogonal. Recall that we say that a vector v is a unit
vector if ||v|| = 1. We use these notions to define the following fundamental concepts.
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Definition: Consider any finite set of vectors v1, v2, ..., vk in an inner product space V . We say that
the vectors form an orthogonal set if 〈vi, vj〉 = 0 whenever i 6= j (so every distinct pair of vectors
is orthogonal). If in addition, every vector in the set is a unit vector, we say that the vectors form
an orthonormal set. If in addition, the vectors are a basis for V , the vectors are an orthonormal
basis for V .

What is good about orthonormal sets? First, it is an important fact that orthonormal sets are
always linearly independent. To see this, let v1, v2, ..., vk be an orthonormal set. Then, if

c1v1 + c2v2 + ....+ ckvk = 0

then
〈c1v1 + c2v2 + ...+ ckvk, v1〉 = 〈0, v1〉 = 0

which implies by bilinearity and orthonormality that c1 = 0. A similar argument works for all ci so
that all ci = 0. So orthonormal vectors are linearly independent.

Further, there is an additional benefit of having an orthonormal basis instead of just a basis. For a
general basis, we have to solve systems of equations to get the coefficients for any linear combination.
But for an orthonormal set, we can get the coefficients by taking inner products. For example, if
v1, v2, ..., vn are an orthonormal basis for V , then given any vector w, if we want to find ci such that

w = c1v1 + c2v2 + ...+ cnvn

by taking the inner product with c1 as above, we get that

c1 = 〈w, v1〉

and more generally, that ci = 〈w, vi〉. This makes finding these coefficients much easier!

Given a subspace W of Rn, we can define the orthogonal complement of W , denoted W⊥, as
the set of all vectors in V that are perpendicular to every vector in W .

Problem 1

Check that W⊥ is a subspace of V . What is W⊥ if W = 0? What is W⊥ if W = V ?
The only vector that is in both W and W⊥ is the zero vector. (Why?) Using this fact, we can

show that every vector in W is “linearly independent” from every vector in W⊥. We notate this by
saying V = W ⊕W⊥, where this operation is called a direct sum. This means that every vector v in
V can be written uniquely as a sum v = w + u where w ∈ W and u ∈ W⊥. This also implies that

dim(V ) = dim(W ) + dim(W⊥)

Problem 2

Find the orthogonal complement of W = span{(1, 1, 2, 1), (1, 0, 0,−1)} in R4.
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