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Eigenvalues and Eigenvectors

Suppose that T : V → V is an arbitrary linear operator (this is a linear operator since we are
starting and ending in the same vector space). Given a basis B for V , we get a matrix [T ]B→B
for the linear transformation T with respect to the basis B. For each such ordered basis B,
we get out a different matrix [T ]B→B.

We could imagine asking the following question: Can we find a basis B for which the form
of [T ]B→B is as simple as possible - in particular, so that this matrix is diagonal? If this matrix
is diagonal, then if the (i, i) entry is λi, this is saying that T (vi) = λvi where vi is the ith basis
vector in B. So if we want to try to find a basis in which a linear transformation is diagonal,
we want to search for nonzero vectors where T applied to that vector gives a multiple of the
original vector.

This motivates the following definition.

Definition: Let T : V → V be a linear operator. A nonzero vector v is called an eigenvector
with eigenvalue λ if T (v) = λv.

As an example, note that u =

[
1
1

]
is an eigenvector of the matrix transformation defined

by the matrix A =

[
1 2
2 1

]
(sending v ∈ R2 to Av ∈ R2) since

Au =

[
1 2
2 1

] [
1
1

]
=

[
3
3

]
= 3u

so that u is an eigenvector of the matrix multiplication linear transformation defined by A,
with eigenvalue 3.

As another example, given the identity transformation I : V → V that sends every vector
to itself, every nonzero element of V is an eigenvector of I with eigenvalue 1. Given the zero
transformation Z : V → V that sends every vector in V to the zero vector, every nonzero
element of V is an eigenvector of A with eigenvalue 0.

Finally, let C∞(R) denote all smooth functions on the real line (functions that have in-
finitely many derivatives). Then, f(x) = eλx is an eigenvector with eigenvalue λ, since

d

dx
(eλx) = λeλx
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We will now restrict to the specific case of linear operators which are matrix transfor-
mations, which recall are linear transformations from a vector space to itself. For a matrix
transformation to map from Rn to Rn, we must restrict to square matrices. So the problem
is, given a square matrix A, can we find all eigenvectors of A?

If A has an eigenvector v, then note that Av = λv. Rewriting this in a more convenient
way, we have that

Av − λv = (A− λI)v = 0

So v is an eigenvector of A with eigenvalue λ if and only if v is in the nullspace of A − λI.
This gives us a nice way of finding all eigenvectors.

If we recall the invertible matrix theorem, this is saying that λ is an eigenvalue of A if and
only if A− λI has nontrivial (nonzero) nullspace if and only if det(A− λI) = 0. So to search
for eigenvectors, we need to find all λ such that

det(A− λI) = 0

and for each such λ, we can find all eigenvectors with that eigenvalue by finding the nullspace
of A − λI. Note in particular that if we denote by Uλ the set of all eigenvectors of A with
eigenvalue λ, with the zero vector added to this set, then Uλ is a subspace of Rn.

It is a fact that eigenvectors for distinct eigenvalues are linearly independent (a fact which
can be proved with the Vandermonde matrix). So if we want to find a basis B for which a
matrix transformation from Rn to Rn given by an n by n matrix A is diagonal, we need to
find n distinct linearly independent eigenvectors (so for each eigenspace, find a basis, and put
all the bases together and see if you get n vectors). If there is a basis of n distinct linearly
independent eigenvectors for an n by n matrix A, then we say that A and its associated matrix
multiplication transformation is diagonalizable.

To find all eigenvalues λ, which are all λ such that det(A− λI) = 0, we need to solve the
equation det(A− xI) = 0 for x. The polynomial

charA(x) = det(A− xI)

is an important polynomial associated to the square matrix A, called the characteristic
polynomial.

The set of eigenvalues as we have discussed is the set of roots of the characteristic polyno-
mial charA(x). However, roots of polynomials may have multiplicity. We define the algebraic
multiplicity of an eigenvalue λ to be its multiplicity as a root of the characteristic polyno-
mial. The geometric multiplicity of an eigenvalue λ is the dimension of Uλ (the nullspace
of A − λI). It is a general fact that geometric multiplicity of an eigenvalue is always
less than the algebraic multiplicity of an eigenvalue.

Another important fact is that the trace of a matrix is the sum of the roots of the character-
istic polynomial (so it is the sum of the eigenvalues repeated with their algebraic multiplicity)
and the determinant of a matrix is the product of the roots of the characteristic polynomial
(so it is the product of the eigenvalues repeated with their algebraic multiplicity).
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Problem 1

Find all eigenvalues and eigenvectors of the following matrices.

A =

[
1 2
2 1

]
[
2 1
0 2

]
 1 −1 1
−1 1 1
0 0 3




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 1 −2 1
−2 0 2
1 2 −3


1 1 0

0 1 1
0 0 1


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