Math 54: Linear Algebra and Differential Equations

Jeffrey Kuan

July 17, 2019

Eigenvalues and Eigenvectors

Suppose that $T: V \rightarrow V$ is an arbitrary linear operator (this is a linear operator since we are starting and ending in the same vector space). Given a basis \mathcal{B} for V, we get a matrix $[T]_{\mathcal{B} \rightarrow \mathcal{B}}$ for the linear transformation T with respect to the basis \mathcal{B}. For each such ordered basis \mathcal{B}, we get out a different matrix $[T]_{\mathcal{B} \rightarrow \mathcal{B}}$.

We could imagine asking the following question: Can we find a basis \mathcal{B} for which the form of $[T]_{\mathcal{B} \rightarrow \mathcal{B}}$ is as simple as possible - in particular, so that this matrix is diagonal? If this matrix is diagonal, then if the (i, i) entry is λ_{i}, this is saying that $T\left(v_{i}\right)=\lambda v_{i}$ where v_{i} is the i th basis vector in \mathcal{B}. So if we want to try to find a basis in which a linear transformation is diagonal, we want to search for nonzero vectors where T applied to that vector gives a multiple of the original vector.

This motivates the following definition.
Definition: Let $T: V \rightarrow V$ be a linear operator. A nonzero vector v is called an eigenvector with eigenvalue λ if $T(v)=\lambda v$.

As an example, note that $u=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector of the matrix transformation defined by the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ (sending $v \in \mathbb{R}^{2}$ to $A v \in \mathbb{R}^{2}$) since

$$
A u=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right]=3 u
$$

so that u is an eigenvector of the matrix multiplication linear transformation defined by A, with eigenvalue 3.

As another example, given the identity transformation $I: V \rightarrow V$ that sends every vector to itself, every nonzero element of V is an eigenvector of I with eigenvalue 1. Given the zero transformation $Z: V \rightarrow V$ that sends every vector in V to the zero vector, every nonzero element of V is an eigenvector of A with eigenvalue 0 .

Finally, let $C^{\infty}(\mathbb{R})$ denote all smooth functions on the real line (functions that have infinitely many derivatives). Then, $f(x)=e^{\lambda x}$ is an eigenvector with eigenvalue λ, since

$$
\frac{d}{d x}\left(e^{\lambda x}\right)=\lambda e^{\lambda x}
$$

We will now restrict to the specific case of linear operators which are matrix transformations, which recall are linear transformations from a vector space to itself. For a matrix transformation to map from \mathbb{R}^{n} to \mathbb{R}^{n}, we must restrict to square matrices. So the problem is, given a square matrix A, can we find all eigenvectors of A ?

If A has an eigenvector v, then note that $A v=\lambda v$. Rewriting this in a more convenient way, we have that

$$
A v-\lambda v=(A-\lambda I) v=0
$$

So v is an eigenvector of A with eigenvalue λ if and only if v is in the nullspace of $A-\lambda I$. This gives us a nice way of finding all eigenvectors.

If we recall the invertible matrix theorem, this is saying that λ is an eigenvalue of A if and only if $A-\lambda I$ has nontrivial (nonzero) nullspace if and only if $\operatorname{det}(A-\lambda I)=0$. So to search for eigenvectors, we need to find all λ such that

$$
\operatorname{det}(A-\lambda I)=0
$$

and for each such λ, we can find all eigenvectors with that eigenvalue by finding the nullspace of $A-\lambda I$. Note in particular that if we denote by U_{λ} the set of all eigenvectors of A with eigenvalue λ, with the zero vector added to this set, then U_{λ} is a subspace of \mathbb{R}^{n}.

It is a fact that eigenvectors for distinct eigenvalues are linearly independent (a fact which can be proved with the Vandermonde matrix). So if we want to find a basis \mathcal{B} for which a matrix transformation from \mathbb{R}^{n} to \mathbb{R}^{n} given by an n by n matrix A is diagonal, we need to find n distinct linearly independent eigenvectors (so for each eigenspace, find a basis, and put all the bases together and see if you get n vectors). If there is a basis of n distinct linearly independent eigenvectors for an n by n matrix A, then we say that A and its associated matrix multiplication transformation is diagonalizable.

To find all eigenvalues λ, which are all λ such that $\operatorname{det}(A-\lambda I)=0$, we need to solve the equation $\operatorname{det}(A-x I)=0$ for x. The polynomial

$$
\operatorname{char}_{A}(x)=\operatorname{det}(A-x I)
$$

is an important polynomial associated to the square matrix A, called the characteristic polynomial.

The set of eigenvalues as we have discussed is the set of roots of the characteristic polynomial $\operatorname{char}_{A}(x)$. However, roots of polynomials may have multiplicity. We define the algebraic multiplicity of an eigenvalue λ to be its multiplicity as a root of the characteristic polynomial. The geometric multiplicity of an eigenvalue λ is the dimension of U_{λ} (the nullspace of $A-\lambda I)$. It is a general fact that geometric multiplicity of an eigenvalue is always less than the algebraic multiplicity of an eigenvalue.

Another important fact is that the trace of a matrix is the sum of the roots of the characteristic polynomial (so it is the sum of the eigenvalues repeated with their algebraic multiplicity) and the determinant of a matrix is the product of the roots of the characteristic polynomial (so it is the product of the eigenvalues repeated with their algebraic multiplicity).

Problem 1

Find all eigenvalues and eigenvectors of the following matrices.

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \\
{\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]} \\
{\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & 1 \\
0 & 0 & 3
\end{array}\right]} \\
{\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
{\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 0 & 2 \\
1 & 2 & -3
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

