Math 54: Linear Algebra and Differential Equations

Jeffrey Kuan

July 15, 2019

The Matrix of a Linear Transformation

Let's motivate the idea of the matrix of a linear transformation with the following example. Suppose that $T: V \rightarrow W$ is a linear transformation, where for concreteness, $\operatorname{dim}(V)=3$ and $\operatorname{dim}(W)=4$. Let $\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$ be an ordered basis for V and let $\mathcal{C}=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ be an ordered basis for W. Suppose that you know that

$$
\begin{gathered}
T\left(v_{1}\right)=2 w_{1}+3 w_{2}+w_{3}-w_{4} \\
T\left(v_{2}\right)=-2 w_{1}+w_{2}-w_{3}-2 w_{4} \\
T\left(v_{3}\right)=w_{1}+w_{2}+2 w_{3}+3 w_{4}
\end{gathered}
$$

Then, what is T ? Well, since $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis, we can write any vector in V in the form

$$
v=a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}
$$

So then, applying linearity, we get an explicit formula for T applied to every vector v !
$T\left(a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}\right)=\left(2 a_{1}-2 a_{2}+a_{3}\right) w_{1}+\left(3 a_{1}+a_{2}+a_{3}\right) w_{2}+\left(a_{1}-a_{2}+2 a_{3}\right) w_{3}+\left(-a_{1}-2 a_{2}+3 a_{3}\right) w_{4}$
Writing this in coordinates, where we use the basis \mathcal{B} for V and the basis \mathcal{C} for W, we get that

$$
T\left(\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]_{\mathcal{B}}\right)=\left[\begin{array}{c}
2 a_{1}-2 a_{2}+a_{3} \\
3 a_{1}+a_{2}+a_{3} \\
a_{1}-a_{2}+2 a_{3} \\
-a_{1}-2 a_{2}+3 a_{3}
\end{array}\right]_{\mathcal{C}}=\left[\begin{array}{ccc}
2 & -2 & 1 \\
3 & 1 & 1 \\
1 & -1 & 2 \\
-1 & -2 & 3
\end{array}\right]\left[a_{1} a_{2} a_{3}\right]_{\mathcal{B}}
$$

This is amazing! Why? Because even though we have an abstract linear transformation, in some sense, our abstract linear transformation is given by a matrix transformation once we fix bases for V and W ! The matrix

$$
[T]_{\mathcal{B} \rightarrow \mathcal{C}}=\left[\begin{array}{ccc}
2 & -2 & 1 \\
3 & 1 & 1 \\
1 & -1 & 2 \\
-1 & -2 & 3
\end{array}\right]
$$

is called the matrix of the linear transformation T with respect to the ordered bases \mathcal{B} and \mathcal{C}.

In general, given a linear transformation $T: V \rightarrow W$, once you fix a basis $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ for V and $\mathcal{C}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ for V and W respectively, the matrix of the linear transformation T with respect to the ordered bases \mathcal{B} and \mathcal{C} is a matrix where the j th column is given by the coordinates of $T\left(v_{j}\right) \in W$ with respect to the basis \mathcal{C} for W.

Problem 1

Find the matrix of the linear transformation $\frac{d}{d x}: P_{3} \rightarrow P_{2}$ with respect to the bases $\mathcal{B}_{1}=$ $\left\{1, x, x^{2}, x^{3}\right\}$ and $\mathcal{C}_{1}=\left\{1, x, x^{2}\right\}$. Then find the matrix of the same linear transformation but now with respect to the bases $\mathcal{B}_{1}=\left\{1+x, 3-2 x, x^{2}+1, x^{3}-x^{2}-x-1\right\}$ and $\mathcal{C}_{1}=\left\{1, x, x^{2}\right\}$. Use the matrix representation to calculate the kernel and range of this map.

Problem 2

The complex numbers \mathbb{C} are given by $a+b i$ where a and b are real numbers, and $i=\sqrt{-1}$.

- Check that \mathbb{C} is a vector space over \mathbb{R}. What is its dimension? Note that \mathbb{R} is a subspace of \mathbb{C}.
- Consider the conjugation map $c: \mathbb{C} \rightarrow \mathbb{C}$ that sends $a+b i$ to $a-b i$. Check that this is a linear transformation. Find the matrix of $c,[c]_{\mathcal{B}_{1} \rightarrow \mathcal{B}_{1}}$ with respect to the natural basis \mathcal{B}_{1} for \mathbb{C}.
- Check that $\mathcal{B}_{2}=\{2+3 i, 1-2 i\}$ is also a basis for \mathcal{C}. Find $[c]_{\mathcal{B}_{2} \rightarrow \mathcal{B}_{2}},[c]_{\mathcal{B}_{1} \rightarrow \mathcal{B}_{2}}$, and $[c]_{\mathcal{B}_{2} \rightarrow \mathcal{B}_{1}}$.
- Abstractly determine if c is bijective, and if it is, find its inverse. What does this mean in terms of the matrices above?

