Math 54: Linear Algebra and Differential Equations

Jeffrey Kuan

July 11, 2019

1 Basis and Dimension

Let's think about \mathbb{R}^{n} again. An easy set of vectors to think about in \mathbb{R}^{3} for example is the set of vectors $(1,0,0),(0,1,0)$, and $(0,0,1)$. Note that this set of vectors is both linearly independent and spans \mathbb{R}^{3}. So we say that this set is a basis for \mathbb{R}^{3}.

What is so useful about this particular basis for \mathbb{R}^{3}, known as the standard basis? Note that since these vectors span \mathbb{R}^{3}, every vector in \mathbb{R}^{3} can be written as a linear combination of $(1,0,0),(0,1,0)$, and $(0,0,1)$ and linear independence tells us that this linear combination is unique. For example,

$$
(2,-3,4)=2(1,0,0)+(-3)(0,1,0)+4(0,0,1)
$$

and this is the unique way of expressing $(2,-3,4)$ as a linear combination of the basis vectors. The fact that there are three linearly independent vectors in \mathbb{R}^{3} that span \mathbb{R}^{3} tells us that in some sense, \mathbb{R}^{3} only has three distinct directions, so it makes sense to say that the dimension of \mathbb{R}^{3} is 3 , the number of elements in the basis.

We now extend this definition to arbitrary vector spaces in the following way.
Definition: Let V be an arbitrary vector space. An ordered basis \mathcal{B} is an ordered list of vectors $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ in V that are linearly independent and span V. If V has an ordered basis, then we define the dimension of V to be the number of elements in that basis.

Here are some elementary facts about bases that we will assume without proof.

- Every vector space has at least one basis.
- Every basis for a given vector space has the same size. (In particular, this is why we can define the dimension of a vector space to be the number of elements in any basis.)
- If the dimension of a vector space V is n, then any n linearly independent vectors are a basis and any n vectors that span V are a basis.
- If U is a subspace of V, then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$.
- If U has a basis, that basis can be extended to a basis for V.

If a vector space has a finite basis, then it is finite-dimensional. But there are also infinite dimensional vector spaces as well. A vector space V is infinite dimensional if it cannot be spanned by finitely many vectors.

- The vector space $C(\mathbb{R})$ is infinite dimensional (Problem Set 5).
- The vector space of infinite sequences is infinite dimensional (Problem Set 6).

Problem 1

Show that $(1,2,-1),(2,-1,1)$, and $(0,1,1)$ is a basis for \mathbb{R}^{3}. This shows that a vector space can have many different bases, but they all must have the same number of vectors.

Problem 2

Show that the set of polynomials in P_{2} whose coefficients add to zero, which we will denote by Z_{2}, is a subspace of P_{2}. Find a basis for Z_{2}, and extend this to a basis for P_{2}.

Problem 3

Let S be the set of 2 by 2 symmetric matrices. Note that S is a subspace of $M_{2 \times 2}$. Find a basis for S and extend this to a basis for $M_{2 \times 2}$.

2 Rank, Nullity, and Rank-Nullity Theorem

Recall that for a linear transformation $T: V \rightarrow W$ between two vector spaces, the kernel of T is the set of vectors in v for which $T(v)=0$ and the range is the set of possible values that can be attained in W. It is an important fact that for any linear transformation, $\operatorname{ker}(T)$ is a subspace of V and range (T) is a subspace of W.

Since $\operatorname{ker}(T)$ is a subspace of V and range (T) is a subspace of W, we can define their dimensions. We define

$$
\begin{aligned}
& \operatorname{nullity}(T)=\operatorname{dim}(\operatorname{ker}(T)) \\
& \operatorname{rank}(T)=\operatorname{dim}(\operatorname{range}(T))
\end{aligned}
$$

It is an important fact that for every linear transformation $T: V \rightarrow W$,

$$
\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim}(V)
$$

This important fact is called the Rank-Nullity Theorem.

Problem 4

Let V be any vector space and let $\operatorname{dim}(V)=n$. Define the identity transformation $I: V \rightarrow V$ by $I(v)=v$ for every v in V, and the zero transformation $Z: V \rightarrow V$ by $Z(v)=0$ for every v in V. Find the rank and nullity of V and Z, and check that the Rank-Nullity Theorem holds.

Problem 5

Consider the derivative map $\frac{d}{d x}: P_{n} \rightarrow P_{n-1}$. What is the rank and nullity of $\frac{d}{d x}$? Check that the Rank-Nullity Theorem holds.

Problem 6

Consider the evaluation at $x=0$ map $E_{0}: P_{n} \rightarrow \mathbb{R}$. What is the rank and nullity of E_{0} ? Check that the Rank-Nullity Theorem holds.

Problem 7

Consider the matrix transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & 1 & -1 \\
2 & 2 & -1
\end{array}\right]
$$

Find a basis for $\operatorname{ker}(T)$ and range (T). Use this to check that the Rank-Nullity Theorem holds.
In particular, the previous problem considers the very important case of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by an m by n matrix A, defined by

$$
T(\mathbf{x})=A \mathbf{x}
$$

As we saw from the previous problem, the nullspace of $A(\operatorname{ker}(T)$ where T is the associated transformation $\mathbf{x} \rightarrow A \mathbf{x}$) is given by the solution to the homogeneous system of equations $A \mathrm{x}=0$, and we can find a simple basis by writing the solution to this system in parametric vector form. The range is given by the span of the columns of A, which is called the column space of A. How can we find a basis for the column space?

Note that the span of the rows of a matrix is unchanged by row reduction. So to find the column space, take the transpose of A, row reduce to reduced row echelon form, and then the nonzero rows of the matrix form a basis for the column space of the original matrix A. You can check that the fact that a pivot column has zeros other than the pivot (which is a 1) in reduced row echelon form means that the nonzero rows in reduced row echelon form are linearly independent.

