Math 54: Linear Algebra and Differential Equations

Jeffrey Kuan

July 10, 2019

1 Subspaces

Recall that if V is a vector space and U is a subset of V, then U is a subspace of V if it is a vector space too, with the operations of vector addition and scalar multiplication taken from the larger space V.

Recall that to check if U is a subspace, it suffices to check the simpler condition that for all reals c_{1}, c_{2}, and for all vectors u_{1}, u_{2} in U, we have that $c_{1} u_{1}+c_{2} u_{2}$ is in U.
Examples of Subspaces:

- Recall that $M_{3 \times 3}$, the set of 3 by 3 matrices is a vector space. The subset $\operatorname{Sym}_{3 \times 3}$ of symmetric 3 by 3 matrices is a subspace of $M_{3 \times 3}$, since for any two symmetric matrices A and $B, c_{1} A+c_{2} B$ is still a symmetric matrix.
- Recall that \mathbb{R}^{3} is a vector space. Then, the set S of vectors $\left(x_{1}, x_{2}, 0\right)$ in \mathbb{R}^{3} is a subspace of \mathbb{R}^{3}, since

$$
c_{1}\left(a_{1}, a_{2}, 0\right)+c_{2}\left(b_{1}, b_{2}, 0\right)=\left(c_{1} a_{1}+c_{2} b_{1}, c_{1} a_{2}+c_{2} b_{2}, 0\right)
$$

is still in S (since the last coordinate is still zero).

- Recall that P_{n} is a vector space. The set of polynomials with constant term equal to zero is a subspace, since $c_{1} p(x)+c_{2} q(x)$ has constant term equal to zero if $p(x)$ and $q(x)$ have constant term equal to zero.
- Every vector space is a subspace of itself.
- Let $\{0\}$ be the set of just the zero vector. Then $\{0\}$ is a subspace of any vector space. It is called the trivial (zero) subspace.
- The set of vectors in \mathbb{R}^{3} with first coordinate equal to 1 is not a subspace of \mathbb{R}^{3}, since $2(1,1,1)=2(1,1,1)+0(1,1,1)=(2,2,2)$ which is a vector that does not have first coordinate equal to 1 .

2 Span and Linear Independence

Recall the concepts of span and linear independence for vectors in \mathbb{R}^{n}. What we will see is that even though we defined these concepts for \mathbb{R}^{n}, we can actually extend the concepts of span and linear independence very naturally to arbitrary vector spaces.

First, let us define the concept of span for an arbitrary vector space.
Definition: Let $v_{1}, v_{2}, \ldots, v_{k}$ be vectors in an abstract vector space V. The $\boldsymbol{\operatorname { s p a n }}$ of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}$ is the set of vectors in V of the form

$$
c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\ldots+c_{k} \mathbf{v}_{\mathbf{k}}
$$

where c_{i} are real numbers. We say that $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}$ span V if their span is the entire vector space V.

Let's consider some examples of span.

Problem 1

- Find the span of the polynomials $1, x, x^{2}$ in P_{4}.
- Find the span of the polynomials $1,1+x$, and x^{2} in P_{4}.
- Find the span of the matrices

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right]
$$

in $M_{2 \times 2}$.

- Find a set of vectors in P_{5} that spans P_{5}.

Now, let's analogously extend the idea of linear independence to an abstract vector space.
Definition: Let V be an arbitrary vector space. A set of vectors $v_{1}, v_{2}, \ldots, v_{k}$ is linearly independent if the only solution to

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{k} v_{k}=0
$$

is the trivial (zero) solution, $c_{1}, c_{2}, \ldots, c_{k}=0$.
As a remark, note that while for vectors in \mathbb{R}^{n}, this was a linear system of equations, this is not necessarily the case for a general arbitrary vector space (at least not yet). However, many questions of linear independence in arbitrary vector spaces can be interpreted as linear systems.

Problem 2

Show that $1, x$, and x^{2} are linearly independent in P_{3} in two different ways.

Problem 3

Show that $1+2+x^{2}, 3-4 x$, and $1+2 x$ are independent in P_{4}.

Problem 4

Show that the functions $y=2^{x}, y=x^{2}$, and $y=x$ are linearly independent in $C(\mathbb{R})$.

3 Basis and Dimension

Let's think about \mathbb{R}^{n} again. An easy set of vectors to think about in \mathbb{R}^{3} for example is the set of vectors $(1,0,0),(0,1,0)$, and $(0,0,1)$. Note that this set of vectors is both linearly independent and spans \mathbb{R}^{3}. So we say that this set is a basis for \mathbb{R}^{3}.

What is so useful about this particular basis for \mathbb{R}^{3}, known as the standard basis? Note that since these vectors span \mathbb{R}^{3}, every vector in \mathbb{R}^{3} can be written as a linear combination of $(1,0,0),(0,1,0)$, and $(0,0,1)$ and linear independence tells us that this linear combination is unique. For example,

$$
(2,-3,4)=2(1,0,0)+(-3)(0,1,0)+4(0,0,1)
$$

and this is the unique way of expressing $(2,-3,4)$ as a linear combination of the basis vectors. The fact that there are three linearly independent vectors in \mathbb{R}^{3} that span \mathbb{R}^{3} tells us that in some sense, \mathbb{R}^{3} only has three distinct directions, so it makes sense to say that the dimension of \mathbb{R}^{3} is 3 , the number of elements in the basis.

We now extend this definition to arbitrary vector spaces in the following way.
Definition: Let V be an arbitrary vector space. An ordered basis \mathcal{B} is an ordered list of vectors $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ in V that are linearly independent and span V. If V has an ordered basis, then we define the dimension of V to be the number of elements in that basis.

Here are some elementary facts about bases that we will assume without proof.

- Every vector space has at least one basis.
- Every basis for a given vector space has the same size. (In particular, this is why we can define the dimension of a vector space to be the number of elements in any basis.)
- If the dimension of a vector space V is n, then any n linearly independent vectors are a basis and any n vectors that span V are a basis.
- If U is a subspace of V, then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$.
- If U has a basis, that basis can be extended to a basis for V.

If a vector space has a finite basis, then it is finite-dimensional. But there are also infinite dimensional vector spaces as well. A vector space V is infinite dimensional if it cannot be spanned by finitely many vectors.

- The vector space $C(\mathbb{R})$ is infinite dimensional (Problem Set 5).
- The vector space of infinite sequences is infinite dimensional (Problem Set 6).

Problem 5

Show that $(1,2,-1),(2,-1,1)$, and $(0,1,1)$ is a basis for \mathbb{R}^{3}. This shows that a vector space can have many different bases, but they all must have the same number of vectors.

Problem 6

Show that the set of polynomials in P_{2} whose coefficients add to zero, which we will denote by Z_{2}, is a subspace of P_{2}. Find a basis for Z_{2}, and extend this to a basis for P_{2}.

Problem 7

Let S be the set of 2 by 2 symmetric matrices. Note that S is a subspace of $M_{2 \times 2}$. Find a basis for S and extend this to a basis for $M_{2 \times 2}$.

