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1 Subspaces

Recall that if V is a vector space and U is a subset of V , then U is a subspace of V if it is
a vector space too, with the operations of vector addition and scalar multiplication taken from
the larger space V .

Recall that to check if U is a subspace, it suffices to check the simpler condition that for all
reals c1, c2, and for all vectors u1, u2 in U , we have that c1u1 + c2u2 is in U .

Examples of Subspaces:

• Recall that M3×3, the set of 3 by 3 matrices is a vector space. The subset Sym3×3 of
symmetric 3 by 3 matrices is a subspace of M3×3, since for any two symmetric matrices
A and B, c1A + c2B is still a symmetric matrix.

• Recall that R3 is a vector space. Then, the set S of vectors (x1, x2, 0) in R3 is a subspace
of R3, since

c1(a1, a2, 0) + c2(b1, b2, 0) = (c1a1 + c2b1, c1a2 + c2b2, 0)

is still in S (since the last coordinate is still zero).

• Recall that Pn is a vector space. The set of polynomials with constant term equal to zero
is a subspace, since c1p(x) + c2q(x) has constant term equal to zero if p(x) and q(x) have
constant term equal to zero.

• Every vector space is a subspace of itself.

• Let {0} be the set of just the zero vector. Then {0} is a subspace of any vector space. It
is called the trivial (zero) subspace.

• The set of vectors in R3 with first coordinate equal to 1 is not a subspace of R3, since
2(1, 1, 1) = 2(1, 1, 1) + 0(1, 1, 1) = (2, 2, 2) which is a vector that does not have first
coordinate equal to 1.
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2 Span and Linear Independence

Recall the concepts of span and linear independence for vectors in Rn. What we will see is that
even though we defined these concepts for Rn, we can actually extend the concepts of span and
linear independence very naturally to arbitrary vector spaces.

First, let us define the concept of span for an arbitrary vector space.

Definition: Let v1, v2, ..., vk be vectors in an abstract vector space V . The span of v1,v2, ...,vk

is the set of vectors in V of the form

c1v1 + c2v2 + ... + ckvk

where ci are real numbers. We say that v1,v2, ...,vk span V if their span is the entire vector
space V .

Let’s consider some examples of span.

Problem 1

• Find the span of the polynomials 1, x, x2 in P4.

• Find the span of the polynomials 1, 1 + x, and x2 in P4.

• Find the span of the matrices [
1 2
1 0

] [
0 1
1 0

] [
0 −1
0 0

]
in M2×2.

• Find a set of vectors in P5 that spans P5.

Now, let’s analogously extend the idea of linear independence to an abstract vector space.

Definition: Let V be an arbitrary vector space. A set of vectors v1, v2, ..., vk is linearly
independent if the only solution to

c1v1 + c2v2 + ... + ckvk = 0

is the trivial (zero) solution, c1, c2, ..., ck = 0.

As a remark, note that while for vectors in Rn, this was a linear system of equations, this is
not necessarily the case for a general arbitrary vector space (at least not yet). However, many
questions of linear independence in arbitrary vector spaces can be interpreted as linear systems.

Problem 2

Show that 1, x, and x2 are linearly independent in P3 in two different ways.
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Problem 3

Show that 1 + 2 + x2, 3− 4x, and 1 + 2x are independent in P4.

Problem 4

Show that the functions y = 2x, y = x2, and y = x are linearly independent in C(R).

3 Basis and Dimension

Let’s think about Rn again. An easy set of vectors to think about in R3 for example is the set of
vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1). Note that this set of vectors is both linearly independent
and spans R3. So we say that this set is a basis for R3.

What is so useful about this particular basis for R3, known as the standard basis? Note
that since these vectors span R3, every vector in R3 can be written as a linear combination of
(1, 0, 0), (0, 1, 0), and (0, 0, 1) and linear independence tells us that this linear combination is
unique. For example,

(2,−3, 4) = 2(1, 0, 0) + (−3)(0, 1, 0) + 4(0, 0, 1)

and this is the unique way of expressing (2,−3, 4) as a linear combination of the basis vectors.
The fact that there are three linearly independent vectors in R3 that span R3 tells us that in
some sense, R3 only has three distinct directions, so it makes sense to say that the dimension
of R3 is 3, the number of elements in the basis.

We now extend this definition to arbitrary vector spaces in the following way.

Definition: Let V be an arbitrary vector space. An ordered basis B is an ordered list of
vectors {v1, v2, ..., vk} in V that are linearly independent and span V . If V has an ordered basis,
then we define the dimension of V to be the number of elements in that basis.

Here are some elementary facts about bases that we will assume without proof.

• Every vector space has at least one basis.

• Every basis for a given vector space has the same size. (In particular, this is why we can
define the dimension of a vector space to be the number of elements in any basis.)

• If the dimension of a vector space V is n, then any n linearly independent vectors are a
basis and any n vectors that span V are a basis.

• If U is a subspace of V , then dim(U) ≤ dim(V ).

• If U has a basis, that basis can be extended to a basis for V .

If a vector space has a finite basis, then it is finite-dimensional. But there are also infinite
dimensional vector spaces as well. A vector space V is infinite dimensional if it cannot be
spanned by finitely many vectors.

• The vector space C(R) is infinite dimensional (Problem Set 5).

• The vector space of infinite sequences is infinite dimensional (Problem Set 6).
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Problem 5

Show that (1, 2,−1), (2,−1, 1), and (0, 1, 1) is a basis for R3. This shows that a vector space
can have many different bases, but they all must have the same number of vectors.

Problem 6

Show that the set of polynomials in P2 whose coefficients add to zero, which we will denote by
Z2, is a subspace of P2. Find a basis for Z2, and extend this to a basis for P2.

Problem 7

Let S be the set of 2 by 2 symmetric matrices. Note that S is a subspace of M2×2. Find a basis
for S and extend this to a basis for M2×2.
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