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Review of Complex Numbers

Remember that a complex number is a number of the form a + bi, where a and b are real
numbers, and i denotes

√
−1. For a complex number z = a + bi, we denote the complex

conjugate z = a+ bi = a − bi, where the conjugate just negates the imaginary part. In
addition, we denote the norm of a complex number z = a+ bi by

|z| = |a+ bi| = (a2 + b2)1/2

It is a fact that |z|2 = zz. Finally, complex conjugates behave nicely with respect to multipli-
cation of complex numbers. In particular,

z1z2 = z1z2

which is an important fact that we will need.

We recall Euler’s identity, which is a fundamental identity that states that

eiθ = cos(θ) + isin(θ)

By applying Euler’s identity, we also have that

e−iθ = ei(−θ) = cos(−θ) + isin(−θ) = cos(θ)− isin(θ)

einθ = cos(nθ) + isin(nθ)

e−inθ = ei(−nθ) = cos(−nθ) + isin(−nθ) = cos(nθ)− isin(nθ)

where in the above calculations, we used the fact that cosine is even and sine is odd (so that
cos(−x) = cos(x) and sin(−x) = −sin(x)).

Note that since

eiθ = cos(θ) + isin(θ) e−iθ = cos(θ)− isin(θ)

we have that the complex conjugate of eiθ is e−iθ, so that

eiθ = e−iθ

So when we take the complex conjugate of a complex exponential, we just negate the imaginary
part of the exponent.

Finally, note that the function einθ is 2π-periodic. This is because

einθ = cos(nθ) + isin(nθ)

and both cos(nθ) and sin(nθ) are 2π-periodic.
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1 Review of Inner Product Spaces

Let us recall two inner product spaces that we previously learned about. The first is L2([−π, π)),
which consists of all square integrable functions on [−π, π) (where a square integrable function
f on [−π, π) is a function for which 1

2π

∫ π
−π |f(θ)|2dθ <∞). Because we will have to consider

functions such as einθ, which are complex valued (so when we put in a real number for θ, we
get a complex number out), we will need to allow complex valued functions more generally to
be in L2([−π, π)).

Since we are considering complex valued functions more generally, we use the following
inner product on L2([−π, π)),

〈f, g〉L2([−π,π)) =
1

2π

∫ π

−π
f(θ)g(θ)dθ

So the norm squared here is

||f ||2L2([−π,π)) = 〈f, f〉L2([−π,π)) =
1

2π

∫ π

−π
|f(θ)|2dθ

where we used |z|2 = zz, so that |f(θ)|2 = f(θ)f(θ).

A function in L2([−π, π)) can be considered as a function that is only defined on [−π, π)
and nowhere else. However, it will be useful to consider such functions also as 2π-periodic
functions, where we take the function defined on [−π, π) and extend it to be defined on all
real numbers, by extending it to be periodic with period 2π. We will have to be able to
think about these two different interpretations of functions in L2([−π, π)) as both functions
on [−π, π) and as periodic functions on R with period 2π.

Evaluating the integrals for complex-valued functions over intervals is similar to just regular
integrals, where we simply treat all i as constants.
Example: Calculate 〈f, g〉L2([−π,π)) where f(x) = x and g(x) = ix.

To do this, we calculate

〈f, g〉L2([−π,π)) =
1

2π

∫ π

−π
xixdx =

1

2π

∫ π

−π
xixdx

=
1

2π

∫ π

−π
−ix2dx =

−i
2π

∫ π

−π
x2dx =

−i
2π
· 2π3

3
= −iπ

2

3

where we used that z1z2 = z1z2, i = −i, and since x takes on real values between −π and π,
x = x.

Next, let us recall the inner product space `2(Z), which consists of all two sided sequences
..., a−2, a−1, a0, a1, a2, ... such that

∑
n∈Z |an|2 =

∑∞
n=−∞ |an|2 is finite (where this sum is over

all integers, not just positive ones). The inner product here was

〈a,b〉`2(Z) =
∑
n∈Z

anbn
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so that the norm squared here is

||a||2`2(Z) =
∑
n∈Z

|an|2

As a note, more generally, we can define L2([a, b)) in an analogous way, with the general
inner product

〈f, g〉L2([a,b)) =
1

b− a

∫ b

a

f(θ)g(θ)dθ

where we can consider the functions here to be functions with period b − a. This is useful
if we are considering functions that do not have a period of 2π, but have some other period.
However, for the discussion below, we will consider just functions with period 2π.

Let’s briefly recall some facts about inner product spaces. For a finite dimensional inner
product space V , recall that it is nice if we can find an orthonormal basis v1, v2, ..., vn for V ,
which means that 〈vi, vi〉 = and 〈vi, vj〉 = 0 when i 6= j. Because this is a basis, every vector
can be written uniquely as a linear combination of the basis vectors, so that

v = c1v1 + c2v2 + ...+ cnvn

uniquely. In addition, because the basis is orthonormal, we can calculate the coefficients ci
easily by simply taking an inner product:

ci = 〈v, vi〉

We will want to extend these ideas to the inner product space L2([−π, π)) which will give us
Fourier series. However, this inner product space, as we might suspect, is infinite dimensional,
so any basis would have to be “infinite” in some sense. If we can find an “infinite” orthonormal
basis f1, f2, f3, ... for this space, we could write any vector f in the space uniquely as an infinite
linear combination of the basis elements,

f = c1f1 + c2f2 + c3f3 + ... =
∞∑
i=1

cifi

where by orthonormality, we can get the coefficients ci easily as

ci = 〈f, fi〉

(As a note, all of this is quite imprecise, but since this is not a proof-based class, we will not
emphasize the details too much. In particular, one would need to rigorously define what a
basis is for an infinite dimensional space, and what it means for the infinite sum above to
converge.) Let us carry this out for L2([−π, π)) now to get Fourier series.
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Fourier Series

The key insight to Fourier series is that the collection of functions

fn = einθ

where n is any integer (not just positive, but all integers, including zero and negative integers)
forms an orthonormal basis in L2([−π, π)). For example,

f1 = eiθ = cos(θ) + isin(θ)

f0 = ei0θ = 1

f−1 = e−iθ = cos(θ)− isin(θ)

Notice that all of the fn are 2π-periodic.

Let us check that the fn form an orthonormal set in L2([−π, π)). We have that

〈fn, fn〉 =
1

2π

∫ π

−π
einθeinθdθ =

1

2π

∫ π

−π
einθe−inθdθ =

1

2π

∫ π

−π
1dθ = 1

and if m 6= n,

〈fm, fn〉 =
1

2π

∫ π

−π
eimθeinθdθ =

1

2π

∫ π

−π
eimθe−inθdθ =

1

2π

∫ π

−π
ei(m−n)θdθ

=
1

2πi(m− n)
ei(m−n)θ

∣∣∣π
−π

= 0

where in the last step, we note that

ei(m−n)π−ei(m−n)(−π) = (cos((m−n)π)+ isin((m−n)π))−((cos((m−n)π)− isin((m−n)π))

= 2isin((m− n)π) = 0

since sine of any multiply of π is zero. So in fact, {fn}n∈Z is an orthonormal set. We will not
prove this, but it is also in fact an orthonormal basis in L2([−π, π)).

Since fn for integers n form an orthonormal basis in L2([−π, π)), we can (formally) write
any function f in L2([−π, π)) as

f(θ) ∼
∑
n∈Z

cnfn =
∑
n∈Z

cne
inθ =

∞∑
n=−∞

cne
inθ

where

cn = 〈f, fn〉 =
1

2π

∫ π

−π
f(θ)einθdθ =

1

2π

∫ π

−π
f(θ)e−inθdθ

We will denote the coefficients cn by f̂(n), and we will call these the Fourier coefficients.
So we have the Fourier expansion

f(θ) ∼
∞∑

n=−∞

f̂(n)einθ where f̂(n) =
1

2π

∫ π

−π
f(θ)e−inθdθ
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(We put a ∼ instead of = because it is not clear that the series on the other side actually
converges, and if it does converge, it is not clear if it converges to f(θ) necessarily).

Let us note an important fact, called Plancherel’s theorem. To motive this, note that
given a function f ∈ L2([−π, π)), we get the Fourier coefficients f̂(n) = 1

2π

∫ π
−π f(θ)e−inθdθ,

which in a sense, tell us how much of each frequency there is in the periodic function. We can
list the Fourier series coefficients in an infinite two-sided sequence as follows:

..., f̂(−2), f̂(−1), f̂(0), f̂(1), f̂(2), ...

It is a fact that this is an element of `2(Z). It is a surprising result, called Plancherel’s theo-

rem that the Fourier series map that sends f ∈ L2([−π, π)) to ..., f̂(−2), f̂(−1), f̂(0), f̂(1), f̂(2), ... ∈
`2(Z) is an isometry. So it is bijective, and it preserves inner products, and hence norms. In
particular, Plancherel’s theorem states that

||f ||2L2([−π,π)) = ||f̂ ||2`2(Z)

so that
1

2π

∫ π

−π
|f(θ)|2dθ =

∞∑
n=−∞

|f̂(n)|2

This amazing fact can be used to prove many fundamental identities in math.

Let us end with a standard example found in many standard mathematical texts (see for
example, Elias M. Stein and Rami Shakarchi’s Fourier Analysis: An Introduction (Princeton
Lectures in Analysis I)).

Example: Find the Fourier series expansion for f = θ defined on [−π, π). Use this expansion
to show that

∞∑
n=1

1

n2
=
π2

6

To do this, we simply calculate the Fourier series. It is advisable to calculate f̂(0) first,

and then calculate f̂(n) for n 6= 0.

f̂(0) =
1

2π

∫ π

−π
f(θ)e−i0θdθ =

1

2π

∫ π

−π
θdθ =

1

2π
(0) = 0

and for n 6= 0, we can integrate by parts to get

f̂(n) =
1

2π

∫ π

−π
θe−inθdθ =

1

2π

[
−θe

−inθ

in

∣∣∣π
−π
−
∫ π

−π

e−inθ

−in
dθ

]
=

1

2π

[
−θe

−inθ

in

∣∣∣π
−π

+

(
−e
−inθ

(in)2

) ∣∣∣π
−π

]
Let us calculate each of these terms.

− θe−inθ

in

∣∣∣π
−π

= − 1

in
(πe−inπ − (−π)einπ) = − π

in
(e−inπ + einπ)

= − π
in

(cos(nπ)−isin(nπ)+(cos(nπ)+isin(nπ))) = − π
in

(2cos(nπ)) = −2π

in
(−1)n =

2π(−1)n+1

in
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(
−e
−inθ

(in)2

) ∣∣∣π
−π

=
1

n2
(e−∈π − einπ) =

1

n2
(cos(nπ)− isin(nπ)− (cos(nπ) + isin(nπ))

=
1

n2
(−2isin(nπ)) = 0

since sine of any multiple of π is zero. So we have that for n 6= 0,

f̂(n) =
1

2π

[
−θe

−inθ

in

∣∣∣π
−π

+

(
−e
−inθ

(in)2

) ∣∣∣π
−π

]
=

1

2π

[
2π(−1)n+1

in
+ 0

]
=

(−1)n+1

in

So

f̂(0) = 0 f̂(n) =
(−1)n+1

in
for n 6= 0

and thus the Fourier series for f(θ) = θ on [−π, π) is

f(θ) ∼
∞∑

n=−∞

f̂(n)einθ =
∑

n6=0,n∈Z

(−1)n+1

in
einθ

where the final sum is over all nonzero integers (both positive and negative).

By Plancherel’s theorem,

1

2π

∫ π

−π
|f(θ)|2dθ =

∑
n∈Z

|f̂(n)|2

The left hand side is
1

2π

∫ π

−π
θ2dθ =

1

2π

2π3

3
=
π2

3

and the right hand side is

∑
n∈Z

|f̂(n)|2 =
∑

n6=0,n∈Z

∣∣∣∣(−1)n+1

in

∣∣∣∣2 =
∑

n6=0,n∈Z

(
|(−1)n+1|
|i| · |n|

)2

=
∑

n6=0,n∈Z

1

n2
= 2

∞∑
n=1

1

n2

where in the last step, we used that in the sum
∑

n6=0,n∈Z
1
n2 which is over both positive and

negative values, the terms for n and −n give identical contributions, since 1
n2 = 1

(−n)2 . So by
Plancherel’s theorem,

2
∞∑
n=1

1

n2
=
π2

3

and hence,
∞∑
n=1

1

n2
=
π2

6

as desired.

As a final note about this example, in other disciplines such as engineering, it is useful to
write Fourier series instead as sums of sines and cosines. Mathematically, this approach is less
appealing because sines and cosines form an orthogonal, but not orthonormal basis. However,
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one can easily write a Fourier series as sines and cosines from the mathematical notation by
separating out positive and negative n in the sum, using Euler’s formula, and joining together
the n and −n terms. As an example, if we wanted to write the above Fourier series in terms
of sines and cosines, we just calculate

∑
n6=0,n∈Z

(−1)n+1

in
einθ =

∞∑
n=1

(−1)n+1

in
einθ +

−1∑
n=−∞

(−1)n+1

in
einθ

=
∞∑
n=1

(−1)n+1

in
einθ +

∞∑
n=1

(−1)−n+1

−in
e−inθ =

∞∑
n=1

(−1)n+1

in
einθ +

∞∑
n=1

(−1)n+1

in
(−e−inθ)

(since (−1)−n+1 = (−1)−2n(−1)n+1 = 1 · (−1)n+1 = (−1)n+1)

=
∞∑
n=1

(−1)n+1

in
(einθ − e−inθ) =

∞∑
n=1

(−1)n+1

in
(cos(nθ) + isin(nθ)− (cos(nθ)− isin(nθ)))

(Euler’s formula)

=
∞∑
n=1

(−1)n+1

in
(2isin(nθ)) =

∞∑
n=1

2(−1)n+1

n
sin(nθ) ∼ f(θ)

So we see that our original sawtooth wave (since we extended it to be periodic with period
2π) can be written in some sense as an infinite sum of sine waves! So in essence, Fourier series
say that we can “decompose” periodic signals into just sums of sines and cosines, where the
decomposition tells us how much of each frequency is in the original signal.
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