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An Introduction to Systems of Differential Equations

Example: Suppose that we have two populations, one of gazelles and one of lions. Let the
number of gazelles and the number of lions at time t be denoted by x1(t) and x2(t) respectively.
Here are some heuristics of the lion and gazelle population.

• The more gazelles there are, the faster the population grows. Same for lions.

• The more lions there are, the faster the population of gazelles decreases, since the lions
prey on the gazelles.

• The more gazelles there are, the faster the population of lions increases, since there are
more resources for the lion population.

Using these heuristics, a reasonable model for such a predator-prey system might be
something like

x′1(t) = x1(t) − x2(t)

x′2(t) = x1(t) + x2(t)

where the differential equations governing the gazelle and lion populations are coupled to
each other. This is called a first order system of differential equations.

We can write such a system in matrix form as follows. Using matrix multiplication, we
can express the above system as [

x1(t)
x2(t)

]
=

[
1 −1
1 1

] [
x1(t)
x2(t)

]
Let us define the solution of this system to be the vector valued function

x(t) =

[
x1(t)
x2(t)

]
where this is a column vector that changes with time, where the first row tells us the gazelle
population at time t and the second row tells us the lion population at time t. We can
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differentiate such a vector-valued function of time by just differentiating each component
separately. Therefore, we can write the system above as

x′(t) =

[
1 −1
1 1

]
x(t)

More generally, a first order system of differential equations with the same number of
equations as variables is a differential equation of the form

x′(t) = Ax(t) where A is an n by n matrix

Written out completely, this is
x′1(t)
x′2(t)

...
x′n(t)

 =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann



x1(t)
x2(t)

...
xn(t)


For any system of differential equations, if there are n variables, it is a fact that the solution

space has dimension n. So to find a solution set, we need n linearly independent functions that
are solutions. Given any n vector-valued functions f1(t), f2(t), ..., fn(t) that are solutions of
the system, we have that this set is a basis for the solution space if and only the functions are
linearly independent for all t, or if and only if the matrix which has fj(t) in the jth column has
nonzero determinant for every time t. In this case, we call the functions f1(t), f2(t), ..., fn(t) a
fundamental solution set for the system of differential equations.

So our goal in solving a system of differential equations is to find a fundamental solution
set. We will consider mostly the case of 2 by 2 systems, in which case we need to find two
linearly independent vector-valued functions that are solutions.

Before talking about how to do this, let us talk about how to visualize the solutions to
these systems of differential equations. We can do what is called a phase plane analysis to
visualize solutions. This is similar to the method of slope fields, except there is no time axis
(in slope fields, there is an axis for time, but for a phase plane, the two axes are the dependent
variables x1(t) and x2(t) and the time is represented by parametrization along what are called
the integral curves.)

For each point (a, b), we can calculate the slope

[
x′1(t)
x′2(t)

]
of an integral curve that passes

through (a, b). We can then draw an x1, x2 plane and then at the point (a, b), draw an arrow

that represents the slope

[
x′1(t)
x′2(t)

] ∣∣∣∣∣
(a,b)

= A

[
a
b

]
. Then, we can draw the integral curves of the

resulting vector field, which represent the solutions to the system.

Solving Systems of Differential Equations

Let us learn how to solve systems of first-order differential equations. We will see that the
spectral theory of the matrix A will play an important role here. We will first start with
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homogeneous systems, which in physical applications typically represent equilibrium states of
systems.

So let us consider a 2 by 2 system x′(t) = Ax(t), where A is 2 by 2. Suppose that A has
two distinct real eigenvalues λ1 and λ2 with corresponding eigenvectors v1 and v2. Then, note
that the function v1e

λ1t is a solution to the system, since

d

dt
(v1e

λ1t) = λ1(v1e
λ1t)

A(v1e
λ1t) = (Av1)eλ1t = λ1(v1e

λ1t)

Similarly, v2e
λ2t is a solution to the system too, and one can check that these solutions are

linearly independent for all t so that they form a fundamental solution set. So then, the
general solution in this case is

x(t) = c1v1e
λ1t + c2v2e

λ2t

Problem 1

Solve the following system of differential equations.

x′1(t) = 3x1(t) − x2(t)

x′2(t) = −x1(t) + 3x2(t)

x′1(t) = x1(t) + 3x2(t)

x′2(t) = x1(t) − x2(t)

Next, let’s consider the second situation, where we have two complex conjugate eigenvalues.
It is a fact that when any non-real eigenvalues come out as complex conjugates, and their
eigenvectors are complex conjugates of each other. Let us consider the example of the original
predator prey system we considered at the start.

x′1(t) = x1(t) − x2(t)

x′2(t) = x1(t) + x2(t)

We can express this system as

x′(t) =

[
1 −1
1 1

]
x(t)

Motivated by the procedure before, let us try to find the eigenvalues of the matrix

A =

[
1 −1
1 1

]
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We get that the characteristic polynomial is

charA(x) = (1 − x)2 + 1 = x2 − 2x+ 2

So the eigenvalues here are λ = 1 ± i. Let us calculate the eigenvectors for each eigenvalue.
For λ = 1 + i, we get

A− λI =

[
−i −1
1 −i

]
so a basis for the eigenspace here is

[
i
1

]
. For λ = 1 − i, we get

A− λI =

[
i −1
1 i

]
so a basis for the eigenspace here is

[
−i
1

]
. Note that the eigenvalues and the associated

eigenvectors are complex conjugates of each other. This will always be the case.

When we get complex conjugate eigenvalues, the way to get a fundamental solution set is
to take one of the conjugate eigenvalues, and consider v1(t)eλ1t as before. In this case, taking
λ = 1 + i, we get

e(1+i)t
[
i
1

]
The trick to get a fundamental solution set mirrors our derivation for second order linear
homogeneous differential equations. We want to use Euler’s formula to expand the complex
exponential, where we recall that Euler’s formula is eiθ = cos(θ) + isin(θ). Then, separate out
all the real terms into one vector and all of the complex terms into the other vector. In this
case, we get

e(1+i)t
[
i
1

]
= eteit

[
i
1

]
= et(cos(t) + isin(t))

[
i
1

]
=

[
−etsin(t) + ietcos(t)
etcos(t) + ietsin(t)

]
=

[
−etsin(t)
etcos(t)

]
+ i

[
etcos(t)
etsin(t)

]
Then the ”real” and ”imaginary” part of the final result give a fundamental solution set for
our original differential equation! In particular, the fundamental solution set would be

f1(t) =

[
−etsin(t)
etcos(t)

]
f2(t) =

[
etcos(t)
etsin(t)

]
So then the solution to the system is

x(t) = c1

[
−etsin(t)
etcos(t)

]
+ c2

[
etcos(t)
etsin(t)

]
Remembering that x(t) =

[
x1(t)
x2(t)

]
, we have that

x1(t) = −c1etsin(t) + c2e
tcos(t)

x2(t) = c1e
tcos(t) + c2e

tsin(t)
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