Math 54 Final Exam (Practice 4)
 Jeffrey Kuan

August 16, 2019

Name: \qquad
SSID: \qquad

Instructions:

- This exam is $\mathbf{1 1 0}$ minutes long.
- No calculators, computers, cell phones, textbooks, notes, or cheat sheets are allowed.
- All answers must be justified. Unjustified answers will be given little or no credit.
- You may write on the back of pages or on the blank page at the end of the exam. No extra pages can be attached.
- There are 7 questions.
- The exam has a total of $\mathbf{2 0 0}$ points.
- Good luck!

Problem 1 (30 points)

Recall that P_{4} is the set of polynomials with real coefficients of degree ≤ 4.

Part (a)

Let U be the set of polynomials in P_{4} such that $p(0)=0$ and $p(1)=-1$. Is U a subspace of P_{4} ? If so, prove that U is a subspace, and find a basis for U. If not, give a proof that shows that U is not a subspace. [15 points]

Part (b)

Let V be the set of polynomials in P_{4} such that $p(-2)=0$ and $p(1)=0$. Is U a subspace of P_{4} ? If so, prove that V is a subspace, and find a basis for V. If not, give a proof that shows that V is not a subspace. [15 points]

Problem 2 (30 points)

Consider the map $T: P_{2} \rightarrow M_{2 \times 2}$ given by

$$
T(p(x))=\left[\begin{array}{cc}
p(-1) & p(1) \\
p^{\prime}(-1) & p^{\prime}(1)
\end{array}\right]
$$

Part (a)

Prove that T is a linear transformation. [5 points]

Part (b)

Find a basis for $\operatorname{ker}(T)$ and a basis for range (T). [25 points]

Problem 3 (30 points)

Consider the matrix

$$
A=\left[\begin{array}{ccc}
x & x+2 & 0 \\
x+2 & 2 x+1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Part (a)

Find all x such that the matrix A is positive definite. [15 points]

Part (b)

Is the matrix A positive semidefinite when $x=0$? Justify your answer with a proof or a computation. [15 points]

Problem 4 (30 points)

Consider the subspace W of points $(x, y, z) \in \mathbb{R}^{3}$ such that $-3 x+2 y-z=0$.

Part (a)

Find an orthonormal basis for W. [10 points]

Part (b)

Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T(v)=\operatorname{proj}_{W^{\perp}}(v)
$$

Find the matrix $[T]_{\mathcal{B} \rightarrow \mathcal{B}}$ of T with respect to the standard basis \mathcal{B} for \mathbb{R}^{3}.

Problem 5 (20 points)

Find the general solution to the following system.

$$
\begin{gathered}
x_{1}^{\prime}(t)=x_{1}(t)+x_{3}(t) \\
x_{2}^{\prime}(t)=x_{2}(t)+x_{3}(t) \\
x_{3}^{\prime}(t)=x_{1}(t)+x_{2}(t)-x_{3}(t)
\end{gathered}
$$

Problem 6 (40 points)

Find the Fourier series expansion for

$$
f(\theta)=|\theta|, \quad-\pi<x<\pi
$$

Use Plancherel's theorem to evaluate

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{4}}=1+\frac{1}{81}+\frac{1}{625}+\ldots
$$

(Hint: You should get $\widehat{f}(n)=\frac{\cos (n \pi)-1}{\pi n^{2}}$ for $n \neq 0$. Don't forget to also calculate $\widehat{f}(0)$.)

Problem 7 (20 points)

Consider the system of differential equations given by

$$
\begin{gathered}
x_{1}^{\prime}(t)=x_{1}(t)+2 x_{2}(t) \\
x_{2}^{\prime}(t)=-2 x_{1}(t)+5 x_{2}(t)
\end{gathered}
$$

Find a general solution to this system. Then, consider the phase portrait that is shown above ${ }^{1}$. Is the phase portrait above a phase portrait for the given system? Justify your answer.

[^0]
[^0]: ${ }^{1}$ Figure generated using Matplotlib

