Math 54 Final Exam (Practice 3)
 Jeffrey Kuan

August 16, 2019

Name: \qquad
SSID: \qquad

Instructions:

- This exam is $\mathbf{1 1 0}$ minutes long.
- No calculators, computers, cell phones, textbooks, notes, or cheat sheets are allowed.
- All answers must be justified. Unjustified answers will be given little or no credit.
- You may write on the back of pages or on the blank page at the end of the exam. No extra pages can be attached.
- There are 7 questions.
- The exam has a total of $\mathbf{2 0 0}$ points.
- Good luck!

Problem 1 (30 points)

Part (a)

Let U be the subset of 3 by 3 matrices with integer entries. Is U a subspace of $M_{3 \times 3}$? Prove your answer. [10 points]

Part (b)

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the translation map, $T(x, y, z)=(x+1, y+1, z+1)$. Is T a linear transformation? Prove your answer. [10 points]

Part (c)

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the matrix multiplication map given by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
0 & -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right]
$$

Is T an isometry? Prove your answer. [10 points]

Problem 2 (30 points)

Part (a)

Show that there is no one-to-one linear transformation T from $M_{2 \times 2}$ to P_{2}. [15 points]

Part (b)

Is there a bijective linear transformation T from $M_{2 \times 2}$ to P_{3} ? Either prove that one does not exist, or find an example of one. [15 points]

Problem 3 (30 points)

Consider the linear transformation $T: P_{4} \rightarrow P_{4}$ given by

$$
T(p(x))=\frac{d^{2}}{d x^{2}}((x-1) p(x))
$$

Find the trace, determinant, and characteristic polynomial of T. Find all eigenvalues and eigenvectors of T. Is T diagonalizable?

Problem 4 (30 points)

Consider the subspace W of \mathbb{R}^{4} spanned by $(1,2,1,0)$ and $(0,1,1,1)$.

Part (a)

Find an orthonormal basis for W. [10 points]

Part (b)

Find an orthonormal basis for W^{\perp}. [20 points]

Problem 5 (30 points)

Find a particular solution to the differential equation

$$
y^{\prime \prime}-3 y^{\prime}+2 y=2 x e^{2 x}-x
$$

such that $y(0)=1$ and $y^{\prime}(0)=0$.

Problem 6 (30 points)

Find the Fourier series expansion for

$$
f(\theta)=-1, \quad-\pi<x<0 \quad f(\theta)=1, \quad 0<x<\pi
$$

Write the expansion as both an infinite sum of complex exponentials, and also as an infinite sum of sines and cosines.

Problem 7 (20 points)

Match the systems of differential equations to the appropriate phase portrait on the next page. Note that not every figure on the next page will be used ${ }^{1}$.

$$
\begin{gather*}
x_{1}^{\prime}(t)=x_{2}(t) \\
x_{2}^{\prime}(t)=-x_{1}(t) \tag{1}\\
x_{1}^{\prime}(t)=2 x_{1}(t)+x_{2}(t) \\
x_{2}^{\prime}(t)=-x_{1}(t)+2 x_{2}(t) \tag{2}\\
x_{1}^{\prime}(t)=-x_{1}(t) \\
x_{2}^{\prime}(t)=-x_{2}(t) \tag{3}\\
x_{1}^{\prime}(t)=x_{1}(t)+2 x_{2}(t) \\
x_{2}^{\prime}(t)=2 x_{1}(t)+x_{2}(t) \tag{4}\\
\\
x_{1}^{\prime}(t)=-3 x_{1}(t)+x_{2}(t) \tag{5}\\
x_{2}^{\prime}(t)=-x_{1}(t)-3 x_{2}(t) \\
x_{1}^{\prime}(t)=-x_{1}(t)+x_{2}(t) \tag{6}\\
x_{2}^{\prime}(t)=-x_{1}(t)-3 x_{2}(t)
\end{gather*}
$$

END OF EXAM

(Figures on next page)

[^0]
(a) Graph (A)

(c) Graph (C)

(e) Graph (E)

(g) Graph (G)

(b) Graph (B)

(d) Graph (D)

(f) Graph (F)

(h) Graph (H)

[^0]: ${ }^{1}$ Figures generated using Matplotlib

