Math 54 Final Exam (Practice 2)
 Jeffrey Kuan

August 16, 2019

Name: \qquad
SSID: \qquad

Instructions:

- This exam is $\mathbf{1 1 0}$ minutes long.
- No calculators, computers, cell phones, textbooks, notes, or cheat sheets are allowed.
- All answers must be justified. Unjustified answers will be given little or no credit.
- You may write on the back of pages or on the blank page at the end of the exam. No extra pages can be attached.
- There are 7 questions.
- The exam has a total of $\mathbf{2 0 0}$ points.
- Good luck!

Problem 1 (30 points)

Let S be the set of 2 by 2 matrices that commute with the matrix $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 0\end{array}\right]$.
Part (a)
Show that S is a subspace of $M_{2 \times 2}$. [10 points]

Part (b)

Find a basis for S. [20 points]

Problem 2 (30 points)

Consider

$$
\mathcal{B}=\left\{\left[\begin{array}{ccc}
0 & 1 & -1 \\
-1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 2 & 0 \\
-2 & 0 & 1 \\
0 & -1 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & -2 \\
0 & 0 & 0 \\
2 & 0 & 0
\end{array}\right]\right\}
$$

Part (a)

Show that \mathcal{B} is a basis for the vector space of skew-symmetric 3 by 3 matrices, Skew $_{3 \times 3}$. [10 points]

Part (b)

For $t:$ Skew $_{3 \times 3} \rightarrow$ Skew $_{3 \times 3}$, calculate $[t]_{\mathcal{B} \rightarrow \mathcal{B}}$, where t is the matrix transpose linear transformation that sends A to A^{t}. [20 points]

Problem 3 (30 points)

Find all least squares solutions to $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{ccccccc}
1 & 2 & 0 & 0 & -1 & 3 & 1 \\
1 & 1 & 0 & -1 & -1 & 3 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]
$$

Problem 4 (30 points)

Consider the matrix multiplication linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$, given by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 0 & 2 \\
-1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Part (a)

Find a basis for $\operatorname{ker}(T)$ and range (T). [10 points]

Part (b)

Determine if the point $(1,3,4,5)$ is in range (T). If not, find the distance from $(1,3,4,5)$ to range (T) in \mathbb{R}^{4}. [20 points]

Problem 5 (20 points)

For each system, find a general solution. [10 points each]

$$
\begin{gathered}
x_{1}^{\prime}(t)=-2 x_{1}(t)+3 x_{2}(t) \\
x_{2}^{\prime}(t)=-2 x_{2}(t) \\
x_{1}^{\prime}(t)=-x_{1}(t)-x_{2}(t) \\
x_{2}^{\prime}(t)=2 x_{1}(t)-3 x_{2}(t)
\end{gathered}
$$

Problem 6 (40 points)

Calculate the Fourier series expansion for the function

$$
f(\theta)=\theta \quad-\pi<\theta<\pi
$$

Write your answer both as a sum of complex exponentials, and as a sum of sines and cosines. Use the expansion and Plancherel's theorem to find the value of the convergent infinite series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

Problem 7 (20 points)

Consider the following six second order differential equations.

$$
\begin{gather*}
y^{\prime \prime}+2 y^{\prime}+17 y=0 \tag{1}\\
y^{\prime \prime}-3 y^{\prime}+2 y=2 x \tag{2}\\
y^{\prime \prime}-2 y^{\prime}+17 y=0 \tag{3}\\
y^{\prime \prime}+2 y^{\prime}+y=0 \tag{4}\\
y^{\prime \prime}+3 y^{\prime}+2 y=0 \tag{5}
\end{gather*}
$$

Match these differential equations to a graph of one of their particular solutions on the next page, which shows all of the figures ${ }^{1}$. Note that every equation here will be matched to a different graph, but not all graphs on the next page will be used.

END OF EXAM

(Figures on next page)

[^0]
(a) Graph (A)

(c) Graph (C)

(e) Graph (E)

(b) Graph (B)

(d) Graph (D)

(f) Graph (F)

[^0]: ${ }^{1}$ Figures generated using Matplotlib

