Math 54 Final Exam (Practice 1)

Jeffrey Kuan

August 16, 2019

Name:	
-------	--

SSID: _____

Instructions:

- This exam is **110 minutes** long.
- No calculators, computers, cell phones, textbooks, notes, or cheat sheets are allowed.
- All answers must be justified. Unjustified answers will be given little or no credit.
- You may write on the back of pages or on the blank page at the end of the exam. No extra pages can be attached.
- There are 7 questions.
- The exam has a total of **200 points**.
- Good luck!

Problem 1 (30 points)

Let U be the set of symmetric 3 by 3 matrices with trace equal to zero. Show that U is a subspace of $M_{3\times 3}$, and find (with proof) a basis for U.

Problem 2 (30 points)

Consider the linear transformation $T: \mathbb{C}^2 \to \mathbb{R}^4$ given by

$$T(a+bi, c+di) = (a+c, a+d, b-c, b+d)$$

Part (a)

Show that T is bijective. [15 points]

Part (b)

Find a formula for $T^{-1}(w, x, y, z)$, where $(w, x, y, z) \in \mathbb{R}^4$. [15 points]

Problem 3 (30 points)

Let $t: M_{2\times 2} \to M_{2\times 2}$ denote the matrix transpose map that sends A to A^t .

Part (a)

Show that t is a linear transformation. [5 points]

Part (b)

Find the trace, determinant, and characteristic polynomial of t, and find all eigenvalues and eigenvectors. Is t diagonalizable? [25 points]

Problem 4 (30 points)

Let W be the plane x - y - 4z = 0 in \mathbb{R}^3 . Which of the points (1, 0, 0), (0, 1, 0), and (0, 0, 1) is closest to W? Justify your answer with calculations or a proof.

Problem 5 (30 points)

Solve the following homogeneous second order linear differential equation in two ways: (1) by converting it to a first order system and solving it, and (2) by using second-order differential equation methods.

$$y'' - y' + y = 0$$

Problem 6 (30 points)

Calculate the Fourier series expansion for the function

$$f(\theta) = e^{\theta} \quad -\pi < \theta < \pi$$

Write your answer both as a sum of complex exponentials, and as a sum of sines and cosines.

Problem 7 (20 points)

Consider the system of differential equations

$$x'_{1}(t) = x_{1}(t) - 2x_{2}(t)$$
$$x'_{2}(t) = -2x_{1}(t) + x_{2}(t)$$

Suppose that $x_1(t)$ and $x_2(t)$ represent the populations of two animals, A and B, in thousands. The phase portrait is shown above¹.

- Find the general solution for the system above.
- Graph the trajectory on the phase portrait for the initial condition $x_1(0) = 8$, $x_2(0) = 5$. In this case, which animal dies out first, Animal A or Animal B? Justify your answer.
- Is (0,0) a stable equilibrium, an unstable equilibrium, or neither?

END OF EXAM

¹Generated using Matplotlib