Math 54 Final Exam (Practice 1)
 Jeffrey Kuan

August 16, 2019

Name: \qquad
SSID: \qquad

Instructions:

- This exam is $\mathbf{1 1 0}$ minutes long.
- No calculators, computers, cell phones, textbooks, notes, or cheat sheets are allowed.
- All answers must be justified. Unjustified answers will be given little or no credit.
- You may write on the back of pages or on the blank page at the end of the exam. No extra pages can be attached.
- There are 7 questions.
- The exam has a total of $\mathbf{2 0 0}$ points.
- Good luck!

Problem 1 (30 points)

Let U be the set of symmetric 3 by 3 matrices with trace equal to zero. Show that U is a subspace of $M_{3 \times 3}$, and find (with proof) a basis for U.

Problem 2 (30 points)

Consider the linear transformation $T: \mathbb{C}^{2} \rightarrow \mathbb{R}^{4}$ given by

$$
T(a+b i, c+d i)=(a+c, a+d, b-c, b+d)
$$

Part (a)
Show that T is bijective. [15 points]

Part (b)

Find a formula for $T^{-1}(w, x, y, z)$, where $(w, x, y, z) \in \mathbb{R}^{4}$. [15 points]

Problem 3 (30 points)

Let $t: M_{2 \times 2} \rightarrow M_{2 \times 2}$ denote the matrix transpose map that sends A to A^{t}.

Part (a)

Show that t is a linear transformation. [5 points]

Part (b)

Find the trace, determinant, and characteristic polynomial of t, and find all eigenvalues and eigenvectors. Is t diagonalizable? [25 points]

Problem 4 (30 points)

Let W be the plane $x-y-4 z=0$ in \mathbb{R}^{3}. Which of the points $(1,0,0),(0,1,0)$, and $(0,0,1)$ is closest to W ? Justify your answer with calculations or a proof.

Problem 5 (30 points)

Solve the following homgeneous second order linear differential equation in two ways: (1) by converting it to a first order system and solving it, and (2) by using second-order differential equation methods.

$$
y^{\prime \prime}-y^{\prime}+y=0
$$

Problem 6 (30 points)

Calculate the Fourier series expansion for the function

$$
f(\theta)=e^{\theta} \quad-\pi<\theta<\pi
$$

Write your answer both as a sum of complex exponentials, and as a sum of sines and cosines.

Problem 7 (20 points)

Consider the system of differential equations

$$
\begin{gathered}
x_{1}^{\prime}(t)=x_{1}(t)-2 x_{2}(t) \\
x_{2}^{\prime}(t)=-2 x_{1}(t)+x_{2}(t)
\end{gathered}
$$

Suppose that $x_{1}(t)$ and $x_{2}(t)$ represent the populations of two animals, A and B, in thousands. The phase portrait is shown above ${ }^{1}$.

- Find the general solution for the system above.
- Graph the trajectory on the phase portrait for the initial condition $x_{1}(0)=8, x_{2}(0)=5$. In this case, which animal dies out first, Animal A or Animal B? Justify your answer.
- Is $(0,0)$ a stable equilibrium, an unstable equilibrium, or neither?

[^0]
[^0]: ${ }^{1}$ Generated using Matplotlib

