# Math 1B: Discussion 2/7/19 

Jeffrey Kuan

February 7, 2019

## Question 1: Approximate Integration

Estimate the integral

$$
\int_{0}^{2}\left(x^{2}+x\right) d x
$$

with $n=4$ using the midpoint rule, left endpoint approximation, right endpoint approximation, trapezoidal rule, and Simpson's rule. Calculate the exact value of the integral. Which approximation works best?

## Question 2: Conceptual Reasoning

Fill in the blanks below with one of the following words:

- nonnegative, nonzero, nonpositive, increasing, decreasing, concave up, concave down

Here are some facts about approximating areas of functions using Riemann sums.

- Any of the four approximation methods gives a nonnegative number when $f$ is $\qquad$
- The left endpoint approximation over-approximates the area under the graph of $f$ when $f$ is
$\qquad$
- The right endpoint approximation over-approximates the area under the graph of $f$ when $f$ is $\qquad$
- The trapezoidal approximation under-approximates the area under the graph of $f$ when $f$ is
- The trapezoidal approximation over-approximates the area under the graph of $f$ when $f$ is
$\qquad$


## Question 3: Improper Integrals

Evaluate the following improper integrals if they converge, or explain why they diverge.

$$
\begin{aligned}
& \int_{1}^{2} \frac{1}{\sqrt{x-1}} d x \\
& \int_{1}^{\infty} x e^{-x} d x
\end{aligned}
$$

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{e^{x}}{1+e^{2 x}} d x \\
\int_{-1}^{1} \frac{1}{\sqrt[3]{x}} d x \\
\int_{-1}^{1} \frac{1}{x^{3}} d x \\
\int_{0}^{e}(\ln (x))^{2} d x \\
\int_{0}^{\frac{\pi}{2}} \tan ^{2}(x) d x \\
\int_{0}^{\infty} e^{-x} \sin (x) d x
\end{gathered}
$$

(Hint: Squeeze theorem)

## Question 4: An Important Example

Let $p$ be a positive number. For what values of $p$ does the improper integral

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x
$$

converge? For what values of $p$ does the improper integral

$$
\int_{0}^{1} \frac{1}{x^{p}} d x
$$

converge? (Hint: You can integrate this easily in the case where $p \neq 1$ by the power rule. But something different happens for the case $p=1$. The integral for $p=1$ is still easy, just different from the integral for $p \neq 1$. What happens in that case?)

Using your rule above, which of the following integrals converge and which of the following integrals diverge?

$$
\begin{gathered}
\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x \\
\int_{0}^{1} \frac{1}{x^{2}} d x \\
\int_{0}^{1} \frac{1}{x} d x \\
\int_{1}^{\infty} \frac{1}{x} d x \\
\int_{1}^{\infty} \frac{1}{x^{2} \sqrt{x}} d x \\
\int_{0}^{1} \frac{1}{\sqrt[4]{x}} d x
\end{gathered}
$$

(Hint: Once you determine the rule from before, you should be able to tell whether these integrals converge or diverge without actually evaluating them.)

