Math 1B: Discussion 2/5/19

Jeffrey Kuan
February 5, 2019

1 Integration of Trigonometric Functions

Reciprocal identities:

$$
\begin{aligned}
\csc (x) & =\frac{1}{\sin (x)} \\
\sec (x) & =\frac{1}{\cos (x)}
\end{aligned}
$$

Pythagorean identities:

$$
\begin{aligned}
& \sin ^{2}(x)+\cos ^{2}(x)=1 \\
& 1+\tan ^{2}(x)=\sec ^{2}(x) \\
& 1+\cot ^{2}(x)+\csc ^{2}(x)
\end{aligned}
$$

Double angle identities:

$$
\begin{gathered}
\sin (2 x)=2 \sin (x) \cos (x) \\
\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=1-2 \sin ^{2}(x)=2 \cos ^{2}(x)-1
\end{gathered}
$$

Power reducing identities:

$$
\begin{aligned}
\sin ^{2}(x) & =\frac{1-\cos (2 x)}{2} \\
\cos ^{2}(x) & =\frac{1+\cos (2 x)}{2}
\end{aligned}
$$

Question 1

Calculate

$$
\int \cos ^{2}(x) d x
$$

two different ways, by (1) integrating by parts, and (2) using the power-reducing rule. Check that you get the same answer both ways. (You may need to use a double angle identity to see that your answers are the same).

Then, calculate

$$
\int \cos ^{4}(x) d x
$$

(Hint: Write $\cos ^{4}(x)=\left(\cos ^{2}(x)\right)^{2}$, and apply the power-reducing formula. After that, use the power-reducing formula again).

Question 2

Calculate

$$
\begin{aligned}
& \int \sec ^{4}(x) \tan ^{2}(x) d x \\
& \int \sec ^{3}(x) \tan (x) d x
\end{aligned}
$$

(Hint: For one of these, you will do $u=\tan (x)$, and for the other, you will do $u=\sec (x)$. Which one requires which substitution?)

Question 3

Calculate the following integrals involving powers of sine and cosine.

$$
\begin{aligned}
& \int \sin ^{5}(x) \cos ^{5}(x) d x \\
& \int \sin ^{2}(x) \cos ^{2}(x) d x
\end{aligned}
$$

Question 4 (Tricky but important examples)

Calculate

$$
\int \tan (x) d x
$$

(Hint: u-substitution.)

$$
\int \tan ^{2}(x) d x
$$

(Hint: Use a trigonometric identity.)

$$
\begin{aligned}
& \int \tan ^{3}(x) d x \\
& \int \tan ^{4}(x) d x
\end{aligned}
$$

(Hint: Use $u=\tan (x)$.)

$$
\int \sec (x) d x
$$

(Hint: Multiply by $\frac{\sec (x)+\tan (x)}{\sec (x)+\tan (x)}$, and then set $u=\sec (x)+\tan (x)$.)

$$
\int \sec ^{2}(x) d x
$$

(Hint: Don’t overthink it...)

$$
\int \sec ^{3}(x) d x
$$

(Hint: Integrate by parts with $u=\sec (x)$ and $d v=\sec ^{2}(x)$.)

$$
\int \sec ^{4}(x) d x
$$

2 Trigonometric Substitution

Question 5

Compute the following integrals.

$$
\begin{aligned}
& \int \frac{x^{2}}{\left(4-x^{2}\right)^{3 / 2}} d x \\
& \int \frac{e^{x}}{\sqrt{e^{2 x}+2 e^{x}}} d x
\end{aligned}
$$

(Hint: u-substitution, then break the integral into two parts.)

$$
\int \frac{2 x+1}{\left(x^{2}+1\right)^{2}} d x
$$

(Hint: Break the integral into two parts.)

Question 6

Compute

$$
\int \frac{x-2}{x^{2}+2 x+5} d x
$$

(Hint: Break the integral up into two parts as $\frac{x-2}{x^{2}+2 x+5}=\frac{x+1}{x^{2}+2 x+5}-\frac{3}{x^{2}+2 x+5}$. Do u-substitution for the first integral. For the second integral, complete the square in the denominator and use trigonometric substitution.)

