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Question 1

We consider the series
∞∑
n=2

1

n2 − n

Let’s begin by writing out a few terms of the infinite sum.

∞∑
n=2

1

n2 − n
=

1

22 − 2
+

1

32 − 3
+

1

42 − 4
+ ... =

1

2
+

1

6
+

1

12
+ ...

The first few partial sums are

S1 =
1

2

S2 =
1

2
+

1

6
=

2

3

S3 =
1

2
+

1

6
+

1

12
=

3

4

Let’s do a partial fraction decomposition for 1
x2−x = 1

x(x−1) .

1

x2 − x
=
A

x
+

B

x− 1

1 = A(x− 1) +Bx

0x+ 1 = (A+B)x− A

So matching coefficients, we get
A+B = 0

−A = 1

So A = −1, B = 1. Thus,
1

x2 − x
=

1

x− 1
− 1

x

1



Using this partial fraction decomposition, we have that

∞∑
n=2

1

n2 − n
=
∞∑
n=2

(
1

n− 1
− 1

n

)
Writing out a few partial sums (same as before but written differently in a more convenient
way now),

S1 =

(
1− 1

2

)
= 1− 1

2

S2 =

(
1− 1

2

)
+

(
1

2
− 1

3

)
= 1− 1

3

S3 =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
= 1− 1

4

The cancellations here explain why this is called a telescoping series. From the previous
calculations, we can see the following pattern.

Sk = 1− 1

k + 1

To see whether the series diverges or converges, just consider the limit of the partial sums
Sk.

limk→∞Sk = limk→∞

(
1− 1

k + 1

)
= 1

Since this limit exists, we have that the original series converges and has value 1.

Question 2

• First consider
∞∑
n=1

1

4 + n2

Let’s first try the integral test. Indeed, we have that f(x) = 1
4+x2

is nonnegative
and continuous (since its denominator is never zero). It is also decreasing since the
denominator is a positive increasing function. So we can use the integral test.∫

1

4 + x2
dx =

1

4

∫
1

1 + (x/2)2
dx =

1

2
arctan

(x
2

)
+ C

where the last integral can be done using u = x/2. We then calculate∫ ∞
1

1

4 + x2
dx = limN→∞

1

2
arctan

(
N

2

) ∣∣∣N
1

= limN→∞

(
1

2
arctan(N/2)− 1

2
arctan(1/2)

)
=

1

2
· π

2
− 1

2
arctan(1/2)

2



which is a finite value. So the integral converges and hence the original series converges.

This can also be done with Direct Comparison. Note that 4 + n2 > n2. So

0 <
1

4 + n2
<

1

n2

But since
∑∞

n=1
1
n2 converges by the p-test (since the exponent on n is larger than 1),

the original series
∑∞

n=1
1

4+n2 also converges by Direct Comparison.

• Next, consider
∞∑
n=1

arctan(n)

1 + n2

Let’s first try the integral test. Indeed, the function f(x) = arctan(x)
1+x2

is positive and
continuous. To check it is decreasing, compute

f ′(x) =
1− 2xarctan(x)

(1 + x2)2

One can see that f ′(x) is always negative for x ≥ 1 (since arctan(x) and 2x are both
increasing, and one can compute f ′(1) < 0). So f is decreasing for x ≥ 1, as desired.
So we can use the integral test.

Using a u-substitution, we find that∫
arctan(x)

1 + x2
dx =

1

2
(arctan(x))2 + C

So we have that∫ ∞
1

arctan(x)

1 + x2
dx = limN→∞

1

2
(arctan(x))2

∣∣∣N
1

= limN→∞
1

2
(arctan(N))2 − 1

2
(arctan(1))2 =

1

2

(π
2

)2
− 1

2

(π
4

)2
So the integral converges. Hence, the original series converges by the integral test.

We can also use Direct Comparison, since the terms of the series are nonnegative. Note
that 0 < arctan(n) < π

2
for n ≥ 1 (by the horizontal asymptote of arctan). So

0 <
arctan(n)

1 + n2
<
π

2
· 1

1 + n2
<
π

2

1

n2

But note that
∞∑
n=1

π

2

1

n2
=
π

2

∞∑
n=1

1

n2

converges by the p test (since the exponent on n is 2, which is bigger tan 1). So the
original series converges by Direct Comparison.
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• Next, consider
∞∑
n=2

1

n2 − 1

Let’s first try the integral test. One can check that the function f(x) = 1
x2−1 is

nonnegative, continuous, and decreasing. Using a partial fraction decomposition,∫
1

x2 − 1
dx =

∫
1

2
· 1

x− 1
− 1

2
· 1

x+ 1
dx =

1

2
ln|x− 1| − 1

2
ln|x+ 1|+ C

Then, note that∫ ∞
2

1

x2 − 1
dx = limN→∞

(
1

2
ln|N − 1| − 1

2
ln|N + 1| − 1

2
ln(1) +

1

2
ln(3)

)
We plug in and get an ∞−∞. This is indeterminate so we have to do something to
fix this. But we can just use properties of logarithms to get that the limit above is the
same as∫ ∞

2

1

x2 − 1
dx = limN→∞

(
1

2
ln|N − 1| − 1

2
ln|N + 1| − 1

2
ln(1) +

1

2
ln(3)

)
= limN→∞

(
1

2
ln

∣∣∣∣N − 1

N + 1

∣∣∣∣− 1

2
ln(1) +

1

2
ln(3)

)
=

1

2
ln(3)

where we used the fact that N−1
N+1

→ 1 as N → ∞, and ln(1) = 0. So the integral
converges and hence the original series converges.

It is hard to use Direct Comparison since

1

n2 − 1
>

1

n2
> 0

so the comparison is going the wrong way, since
∑

1
n2 converges by the p-test (since

2 > 1). On Tuesday, we will learn the Limit Comparison Test, which will handle this
case well.

• Next, consider
∞∑
n=0

n3

n4 − 5

First, try the integral test. Note that f(x) = x3

x4−5 is not positive or continuous for
x ≥ 0 (the denominator has a zero at the fourth root of 5). But it is eventually positive
and continuous for x ≥ 2. So rewrite

∞∑
n=0

n3

n4 − 5
= 0− 1

4
+
∞∑
n=2

n3

n4 − 5
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and note that the convergence or divergence of the original sequence is equivalent to
the convergence or divergence of the shifted sequence

∑∞
n=2

n3

n4−5 . Finally, we just need
to check whether f is decreasing for x ≥ 2.

f ′(x) =
3x2(x4 − 5)− 4x6

(x4 − 5)2
=
−x6 − 16x2

(x4 − 5)2

The numerator is always negative (since even powers are always positive) and the
denominator is always positive (since it is a square of something). So f ′ is always
negative. So f is decreasing.

So we can use the integral test. We can calculate using a u-substitution, u = x4 − 5,
that ∫

x3

x4 − 5
dx =

1

3
ln|x4 − 5|+ C

So ∫ ∞
2

x3

x4 − 5
dx = limN→∞

1

3
ln|N4 − 5| − 1

3
ln(11) =∞

since N4− 5→∞ as N →∞ and ln|x| → ∞ as x→∞. The integral diverges, so the
original series diverges.

We can also use Direct Comparison on the series
∑∞

n=2
n3

n4−5 , where we write

∞∑
n=0

n3

n4 − 5
= 0− 1

4
+
∞∑
n=2

n3

n4 − 5

and note that the terms n3

n4−5 are indeed nonnegative for n ≥ 2. We have that

n3

n4 − 5
>
n3

n4
=

1

n
> 0

Since
∑∞

n=2
1
n

diverges by the p test (since the exponent on n, which is 1, is less than
or equal to 1), the original series diverges by Direct Comparison.

• Next, consider
∞∑
n=1

4 + sin(n2)

n
√
n

It is hard to integrate f(x) here, so let’s not do the integral test. Let’s try Direct
Comparison.

This series is “basically” like a constant times
∑∞

n=1
1

n
√
n

=
∑∞

n=1
1

n3/2 . So we would

expect this to converge by the p test (since 3/2 > 1). So let’s try to show using Direct
Comparison that the original series converges. Note that

−1 ≤ sin(n2) ≤ 1
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3 ≤ 4 + sin(n2) ≤ 5

So in particular,

0 <
3

n
√
n
≤ 4 + sin(n2)

n
√
n

≤ 5

n
√
n

(where the bottom inequality shows that the terms of our series are nonnegative so
we can use Direct Comparison). Note that

∑∞
n=1

5
n
√
n

= 5
∑∞

n=1
1

n3/2 converges by the
p-test, so the original series converges by Direct Comparison.

• Finally, consider
∞∑
n=1

1

n!

We observe that n! ≥ 2n−1. To see this, we can write out

2! = 2 ≥ 2

3! = 3 · 2 ≥ 2 · 2 = 22

4! = 4 · 3 · 2 ≥ 2 · 2 · 2 = 23

(since 4 ≥ 2, 3 ≥ 2, and 2 ≥ 2, so 4 · 3 · 2 ≥ 2 · 2 · 2). So in particular,

n! = n · (n− 1) · (n− 2) · ... · 3 · 2
where when we are leaving out the multiplication by 1, we are multiplying n − 1
numbers that are all ≥ 2. So n! ≥ 2n−1.

We cannot integrate a factorial function. But we can use Direct Comparison. Note
that by the inequality we just showed,

0 <
1

n!
<

1

2n−1
= 21−n

So we just need to show that
∞∑
n=1

21−n

converges. But since f(x) = 21−x is positive, continuous, and decreasing (look at at a
graph of f(x)), we can use the integral test. Remembering that (2x)′ = ln(2) · 2x, we
have that ∫

21−xdx = −
∫

2udu = − 1

ln(2)
2u + C = − 1

ln(2)
21−x + C

where we used u = 1− x. So we have that∫ ∞
1

21−xdx = limN→∞

(
− 1

ln(2)
21−N +

1

ln(2)

)
=

1

ln(2)

since 21−N → 0 as N → ∞, since we are taking 2 to a very large negative power. So
we have that

∞∑
n=1

21−n

converges by the integral test. So by Direct Comparison,
∑∞

n=1
1
n!

converges too.
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Question 3

We have that
∑∞

n=1
1
n

diverges by the p test. Or we can use the integral test. Note that
f(x) = 1/x is positive, continuous, and decreasing for x ≥ 1. Then,∫ ∞

1

1

x
dx = limN→∞ln|N | − ln|1| =∞

The integral diverges, so the original series
∑∞

n=1
1
n

diverges too.

Next, consider
∑∞

n=2
1

nln(n)
. We note that

f(x) =
1

xln(x)

is positive (since ln(x) > 0 for x ≥ 2), continuous, and decreasing (since x and ln(x) are
positive increasing functions on x ≥ 2), on x ≥ 2. So we can use the integral test. We can
calculate using a u-substitution, u = ln(x), that∫

1

xln(x)
dx = ln|ln(x)|+ C

So we have that ∫ ∞
2

1

xln(x)
dx = limN→∞ln|ln(N)| − ln|ln(2)| =∞

since ln(N) → ∞ as N → ∞, so ln|ln(N)| → ∞ also as N → ∞. So since the integral
diverges, we have that

∞∑
n=2

1

nln(n)

diverges too by the integral test.

Finally, consider
∞∑
n=2

1

n(ln(n))2

Let f(x) = 1
x(ln(x))2

. For x ≥ 2, this is positive, continuous, and decreasing (since x and ln(x)

and hence (ln(x))2 are positive increasing functions for x ≥ 2). So we can use the integral
test. Use a u-substitution u = ln(x) to calculate∫

1

x(ln(x))2
dx =

∫
1

u2
du = −1

u
+ C = − 1

ln(x)
+ C

Then, we calculate∫ ∞
2

1

x(ln(x))2
dx = limN→∞

(
− 1

ln(N)
+

1

ln(2)

)
= 0 +

1

ln(2)
=

1

ln(2)

where 1
ln(N)

asN →∞ is 0 since it is 1 over a very large number. So the integral converges and

hence the original series
∑∞

n=2
1

n(ln(n))2
converges. So the extra natural log in the denominator

really does make a difference!
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