Math 1B: Discussion 2/26/19 Answers

Jeffrey Kuan

February 26, 2019

Question 1

First consider

$$
a_{n}=\frac{1}{n^{1 / 8}}
$$

We have that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{n^{1 / 8}}=0
$$

Next, consider

$$
a_{n}=\frac{(-1)^{n^{2}}}{\sqrt{n}}
$$

Recall from class that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ if and only if $\lim _{n \rightarrow \infty} a_{n}=0$. Here, we have that

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n^{2}}}{\sqrt{n}}\right|=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0
$$

So since $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, we have that $\lim _{n \rightarrow \infty} a_{n}=0$.
For the next sequence

$$
a_{n}=(-1)^{n} 2^{n}
$$

we see that the sequence is $-2,4,-8,16, \ldots$ so this sequence cannot converge.
Next, consider

$$
a_{n}=(-1)^{n} 2^{-n}
$$

We see that

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty}\left|(-1)^{n} 2^{-n}\right|=\lim _{n \rightarrow \infty} 2^{-n}=0
$$

since 2^{-n} is $\left(\frac{1}{2}\right)^{n}$.
Next, consider

$$
a_{n}=\cos \left(\frac{1}{n^{2}}\right)
$$

Note that $1 / n^{2} \rightarrow 0$ as $n \rightarrow \infty$. So since $\cos (x)$ is a continuous function, we have that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \cos \left(\frac{1}{n^{2}}\right)=\cos \left(\lim _{n \rightarrow \infty} \frac{1}{n^{2}}\right)=\cos (0)=1
$$

Finally, consider

$$
a_{n}=\frac{\sin ^{3}\left(n^{2}\right)}{\sqrt{n}}
$$

Let us show that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$. Use the squeeze theorem.

$$
0 \leq\left|\sin \left(n^{2}\right)\right| \leq 1
$$

so

$$
\begin{gathered}
0 \leq\left|\sin ^{3}\left(n^{2}\right)\right| \leq 1 \\
0 \leq \frac{\left|\sin ^{3}\left(n^{2}\right)\right|}{\sqrt{n}} \leq \frac{1}{\sqrt{n}}
\end{gathered}
$$

But note that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} 0=0 \\
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0
\end{gathered}
$$

So by the squeeze theorem,

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} \frac{\left|\sin ^{3}\left(n^{2}\right)\right|}{\sqrt{n}}=0
$$

Thus, since $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, we also have that $\lim _{n \rightarrow \infty} a_{n}=0$.

Question 2

We have that

$$
\begin{gathered}
S_{1}=-\frac{1}{3} \\
S_{2}=-\frac{1}{3}+\frac{1}{9} \\
S_{3}=-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}
\end{gathered}
$$

and so on. Remember the partial sum formula for a geometric series.

$$
a+a r+a r^{2}+a r^{m-1}=\frac{a\left(1-r^{m}\right)}{1-r}
$$

Note that

$$
S_{k}=-\frac{1}{3}+\frac{1}{9}-\ldots+\left(-\frac{1}{3}\right)\left(-\frac{1}{3}\right)^{k-1}
$$

Using the partial sum formula (where $a=-1 / 3$ since a is the first term, $r=-1 / 3$ since r is the multiplication factor), we have that

$$
S_{k}=\frac{-1 / 3\left(1-(-1 / 3)^{k}\right)}{(1-(-1 / 3)}=-\frac{1}{3} \cdot \frac{3}{4}\left(1-\left(-\frac{1}{3}\right)^{k}\right)=-\frac{1}{4}\left(1-\left(-\frac{1}{3}\right)^{k}\right)
$$

Then, to find out whether this series converges or diverges, we compute $\lim _{k \rightarrow \infty} S_{k}$.

$$
\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty}-\frac{1}{4}\left(1-\left(-\frac{1}{3}\right)^{k}\right)=-\frac{1}{4}(1-0)=-\frac{1}{4}
$$

since $(-1 / 3)^{k} \rightarrow 0$ as $k \rightarrow \infty$, since multiply $-1 / 3$ to itself over and over again makes it smaller in magnitude (ignoring the sign). So the geometric series converges (which we could also immediately see from the fact that $|r|<1$ since $r=-1 / 3)$.

Question 3

Consider the first series

$$
\sum_{n=1}^{\infty}(-1)^{n}=1+(-1)+1+(-1)+\ldots
$$

You can tell it diverges in one of the following three ways.

- It is a geometric series with $r=-1$. Since $|r| \geq 1$, this geometric series diverges.
- Let $a_{n}=(-1)^{n}$. We see that $\lim _{n \rightarrow \infty} a_{n}$ does not exist since it bounces back and forth between 1 and -1 . So since $\lim _{n \rightarrow \infty} a_{n} \neq 0$, this series diverges by the nth term test.
- If you calculate the partial sums, you get

$$
\begin{gathered}
S_{1}=1 \\
S_{2}=1+(-1)=0 \\
S_{3}=1+(-1)+1=1 \\
S_{4}=1+(-1)+1+(-1)=0
\end{gathered}
$$

So the partial sums bounce back and forth between 1 and 0 , and hence $\lim _{k \rightarrow \infty} S_{k}$ does not exist. So the series diverges.

Next, consider

$$
\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{2}{3}\right)^{n}=\sum_{n=1}^{\infty}\left(-\frac{2}{3}\right)^{n}=-\frac{2}{3}+\frac{4}{9}-\frac{8}{27}+\ldots
$$

Note that this series is geometric with $r=-2 / 3$. So since $|r|<1$, this geometric series converges. The value it converges to is given by the formula

$$
\frac{a}{1-r}=\frac{-2 / 3}{1-(-2 / 3)}=-\frac{2}{5}
$$

Next, consider

$$
\sum_{n=1}^{\infty}(-1)^{n^{2}} \frac{2 n^{2}}{n^{2}+4}
$$

We show that this diverges by the nth term test. In particular, for

$$
a_{n}=(-1)^{n^{2}} \frac{2 n^{2}}{n^{2}+4}
$$

we claim that $\lim _{n \rightarrow \infty} a_{n}=0$. Remember that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ if and only if $\lim _{n \rightarrow \infty} a_{n}=0$. So $\lim _{n \rightarrow \infty}\left|a_{n}\right| \neq 0$ if and only if $\lim _{n \rightarrow \infty} a_{n} \neq 0$. We can easily see that

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} \frac{2 n^{2}}{n^{2}+4}=2
$$

(can be shown by L'Hopital, or by dividing top and bottom by n^{2}). So since $\lim _{n \rightarrow \infty}\left|a_{n}\right|=$ $2 \neq 0$, we conclude that $\lim _{n \rightarrow \infty} a_{n} \neq 0$ also. So by the nth term test, this series diverges.

Finally, consider

$$
\sum_{n=1}^{\infty} \frac{1}{3^{n}+2}
$$

Note that $3^{n}+2>3^{n}$, so

$$
0<\frac{1}{3^{n}+2}<\frac{1}{3^{n}}
$$

The series $\sum_{n=1}^{\infty} \frac{1}{3^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}$ is geometric with $r=1 / 3$ and hence converges since $|r|<1$. Then by comparison,

$$
\sum_{n=1}^{\infty} \frac{1}{3^{n}+2}
$$

converges also. It is not possible to find its actual value, at least using the methods we have so far.

Question 4

Suppose we know that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Then, note that for positive integers n,

$$
n \geq \sqrt{n}
$$

So,

$$
\frac{1}{n} \leq \frac{1}{\sqrt{n}}
$$

Therefore,

$$
\sum_{n=1}^{\infty} \frac{1}{n} \leq \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}
$$

But since we know that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges to infinity, we have by the above inequality that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges to infinity also. (This is the comparison test).

Now, suppose we know that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges to some value M. Consider

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}}
$$

We could show that this converges by the comparison test. But let's use the following more hands-on approach. Let S_{k} denote the partial sums of

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}}
$$

Note that

$$
\frac{1}{n^{3}} \leq \frac{1}{n^{2}}
$$

for all positive integers n. So we have that the partial sums S_{k} must be bounded above by $M=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$. In addition, S_{k} is monotonically increasing since all terms that are being added in the infinite sum $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ are positive. So S_{k} (the sequence of partial sums for $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$) is a monotonically increasing sequence that is bounded above by M. So it must converge. Since $\lim _{k \rightarrow \infty} S_{k}$ thus exists, we have by definition that the infinite sum

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}}
$$

converges.

