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Question 1

First consider

We have that

Next, consider

Recall from class that lim,, ,.|a,| = 0 if and only if lim,_,,a, = 0. Here, we have that
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So since lim,,_,.|a,| = 0, we have that lim,_,,a, = 0.
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For the next sequence
a, = (—1)"2"
we see that the sequence is —2,4, —8, 16, ... so this sequence cannot converge.

Next, consider
a, = (—=1)"27"

We see that
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lim,, s oolan| = limy, o0 [(—1)"27"] = lim,, 427" =0
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Note that 1/n* — 0 as n — oo. So since cos(z) is a continuous function, we have that
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Next, consider
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Finally, consider
sin®(n?)
Ay = ———
Vn
Let us show that lim,,_,..|a,| = 0. Use the squeeze theorem.
0 < |sin(n?)| <1
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0 < |sin*(n?)] < 1
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But note that

lim;, 5,0 =0
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So by the squeeze theorem,
|sin®(n?)]
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Thus, since lim,, ;4 |a,| = 0, we also have that lim,,_,..a, = 0.
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Question 2

We have that
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and so on. Remember the partial sum formula for a geometric series.

1_ m
a+ar+ar2+arm_1:—a( )

1—7r
Note that
g L, 1 /1 I
T3 To 3)\ 3
Using the partial sum formula (where a = —1/3 since a is the first term, » = —1/3 since r

is the multiplication factor), we have that
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Then, to find out whether this series converges or diverges, we compute limy,_,Sk.
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limy 005k = limg_o0 — Z (1 - (—§> ) = _Z(l — O) = _Z

since (—1/3)¥ — 0 as k — oo, since multiply —1/3 to itself over and over again makes it
smaller in magnitude (ignoring the sign). So the geometric series converges (which we could
also immediately see from the fact that |r| < 1 since r = —1/3).

Question 3

Consider the first series
(1) =14 (=) + 1+ (=1) + ..
n=1
You can tell it diverges in one of the following three ways.
e It is a geometric series with r = —1. Since |r| > 1, this geometric series diverges.

e Let a, = (—1)". We see that lim,,_,,.a, does not exist since it bounces back and forth
between 1 and -1. So since lim,,_,,.a, # 0, this series diverges by the nth term test.

e If you calculate the partial sums, you get
S =1

So=14+(-1)=0
Sy=1+(-1)+1=1
Sy=1+(-1)+1+(-1)=0

So the partial sums bounce back and forth between 1 and 0, and hence limy_,,..S; does
not exist. So the series diverges.

Next, consider
> 2\" & 2\" 2 4 8
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Note that this series is geometric with r = —2/3. So since |r| < 1, this geometric series
converges. The value it converges to is given by the formula
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Next, consider

2n?
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We show that this diverges by the nth term test. In particular, for
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we claim that lim,,_,..a, = 0. Remember that lim,_,|a,| = 0 if and only if lim,,_,,.a, = 0.
So lim,, o0 |a,| # 0 if and only if lim,,_,.a, # 0. We can easily see that
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(can be shown by L’Hopital, or by dividing top and bottom by n?). So since lim,, o |a,| =
2 # 0, we conclude that lim,,_,s.a, # 0 also. So by the nth term test, this series diverges.

Finally, consider
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The series > o0 | = = > >, (4)" is geometric with 7 = 1/3 and hence converges since |r| < 1.
Then by comparison,

Note that 3" 4+ 2 > 3", so
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converges also. It is not possible to find its actual value, at least using the methods we have
so far.

Question 4
Suppose we know that » % diverges. Then, note that for positive integers n,

n>n

So,
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Therefore,

But since we know that "> | % diverges to mﬁmty, we have by the above inequality that

Yoy \/iﬁ diverges to infinity also. (This is the comparison test).
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Now, suppose we know that > °° 2 converges to some value M. Consider
) n=1 n2

= 1
>
n=1
We could show that this converges by the comparison test. But let’s use the following more
hands-on approach. Let S; denote the partial sums of
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Note that

for all positive integers n. So we have that the partial sums Sy must be bounded above by
M= n—12 In addition, Sy is monotonically increasing since all terms that are being
added in the infinite sum ), n% are positive. So Sy (the sequence of partial sums for
Yo n%) is a monotonically increasing sequence that is bounded above by M. So it must
converge. Since limy_,,Si thus exists, we have by definition that the infinite sum
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converges.



