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Question 1

First consider

an =
1

n1/8

We have that

limn→∞an = limn→∞
1

n1/8
= 0

Next, consider

an =
(−1)n

2

√
n

Recall from class that limn→∞|an| = 0 if and only if limn→∞an = 0. Here, we have that

limn→∞|an| = limn→∞

∣∣∣∣∣(−1)n
2

√
n

∣∣∣∣∣ = limn→∞
1√
n

= 0

So since limn→∞|an| = 0, we have that limn→∞an = 0.

For the next sequence
an = (−1)n2n

we see that the sequence is −2, 4,−8, 16, ... so this sequence cannot converge.

Next, consider
an = (−1)n2−n

We see that
limn→∞|an| = limn→∞|(−1)n2−n| = limn→∞2−n = 0

since 2−n is
(
1
2

)n
.

Next, consider

an = cos

(
1

n2

)
Note that 1/n2 → 0 as n→∞. So since cos(x) is a continuous function, we have that

limn→∞an = limn→∞cos

(
1

n2

)
= cos

(
limn→∞

1

n2

)
= cos(0) = 1

1



Finally, consider

an =
sin3(n2)√

n

Let us show that limn→∞|an| = 0. Use the squeeze theorem.

0 ≤ |sin(n2)| ≤ 1

so
0 ≤ |sin3(n2)| ≤ 1

0 ≤ |sin
3(n2)|√
n

≤ 1√
n

But note that
limn→∞0 = 0

limn→∞
1√
n

= 0

So by the squeeze theorem,

limn→∞|an| = limn→∞

∣∣sin3(n2)
∣∣

√
n

= 0

Thus, since limn→∞|an| = 0, we also have that limn→∞an = 0.

Question 2

We have that

S1 = −1

3

S2 = −1

3
+

1

9

S3 = −1

3
+

1

9
− 1

27

and so on. Remember the partial sum formula for a geometric series.

a + ar + ar2 + arm−1 =
a(1− rm)

1− r

Note that

Sk = −1

3
+

1

9
− ... +

(
−1

3

)(
−1

3

)k−1

Using the partial sum formula (where a = −1/3 since a is the first term, r = −1/3 since r
is the multiplication factor), we have that

Sk =
−1/3(1− (−1/3)k)

(1− (−1/3)
= −1

3
· 3

4

(
1−

(
−1

3

)k
)

= −1

4

(
1−

(
−1

3

)k
)

2



Then, to find out whether this series converges or diverges, we compute limk→∞Sk.

limk→∞Sk = limk→∞ −
1

4

(
1−

(
−1

3

)k
)

= −1

4
(1− 0) = −1

4

since (−1/3)k → 0 as k → ∞, since multiply −1/3 to itself over and over again makes it
smaller in magnitude (ignoring the sign). So the geometric series converges (which we could
also immediately see from the fact that |r| < 1 since r = −1/3).

Question 3

Consider the first series

∞∑
n=1

(−1)n = 1 + (−1) + 1 + (−1) + ...

You can tell it diverges in one of the following three ways.

• It is a geometric series with r = −1. Since |r| ≥ 1, this geometric series diverges.

• Let an = (−1)n. We see that limn→∞an does not exist since it bounces back and forth
between 1 and -1. So since limn→∞an 6= 0, this series diverges by the nth term test.

• If you calculate the partial sums, you get

S1 = 1

S2 = 1 + (−1) = 0

S3 = 1 + (−1) + 1 = 1

S4 = 1 + (−1) + 1 + (−1) = 0

So the partial sums bounce back and forth between 1 and 0, and hence limk→∞Sk does
not exist. So the series diverges.

Next, consider

∞∑
n=1

(−1)n
(

2

3

)n

=
∞∑
n=1

(
−2

3

)n

= −2

3
+

4

9
− 8

27
+ ...

Note that this series is geometric with r = −2/3. So since |r| < 1, this geometric series
converges. The value it converges to is given by the formula

a

1− r
=

−2/3

1− (−2/3)
= −2

5

3



Next, consider
∞∑
n=1

(−1)n
2 2n2

n2 + 4

We show that this diverges by the nth term test. In particular, for

an = (−1)n
2 2n2

n2 + 4

we claim that limn→∞an = 0. Remember that limn→∞|an| = 0 if and only if limn→∞an = 0.
So limn→∞|an| 6= 0 if and only if limn→∞an 6= 0. We can easily see that

limn→∞|an| = limn→∞
2n2

n2 + 4
= 2

(can be shown by L’Hopital, or by dividing top and bottom by n2). So since limn→∞|an| =
2 6= 0, we conclude that limn→∞an 6= 0 also. So by the nth term test, this series diverges.

Finally, consider
∞∑
n=1

1

3n + 2

Note that 3n + 2 > 3n, so

0 <
1

3n + 2
<

1

3n

The series
∑∞

n=1
1
3n

=
∑∞

n=1

(
1
3

)n
is geometric with r = 1/3 and hence converges since |r| < 1.

Then by comparison,
∞∑
n=1

1

3n + 2

converges also. It is not possible to find its actual value, at least using the methods we have
so far.

Question 4

Suppose we know that
∑∞

n=1
1
n

diverges. Then, note that for positive integers n,

n ≥
√
n

So,
1

n
≤ 1√

n

Therefore,
∞∑
n=1

1

n
≤

∞∑
n=1

1√
n

But since we know that
∑∞

n=1
1
n

diverges to infinity, we have by the above inequality that∑∞
n=1

1√
n

diverges to infinity also. (This is the comparison test).

4



Now, suppose we know that
∑∞

n=1
1
n2 converges to some value M . Consider

∞∑
n=1

1

n3

We could show that this converges by the comparison test. But let’s use the following more
hands-on approach. Let Sk denote the partial sums of

∞∑
n=1

1

n3

Note that
1

n3
≤ 1

n2

for all positive integers n. So we have that the partial sums Sk must be bounded above by
M =

∑∞
n=1

1
n2 . In addition, Sk is monotonically increasing since all terms that are being

added in the infinite sum
∑∞

n=1
1
n3 are positive. So Sk (the sequence of partial sums for∑∞

n=1
1
n3 ) is a monotonically increasing sequence that is bounded above by M . So it must

converge. Since limk→∞Sk thus exists, we have by definition that the infinite sum

∞∑
n=1

1

n3

converges.
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