Math 1B: Discussion 2/26/19

Jeffrey Kuan
February 26, 2019

Question 1

Determine the limits of the following sequences, if they exist.

$$
\begin{gathered}
a_{n}=\frac{1}{n^{1 / 8}} \\
a_{n}=\frac{(-1)^{n^{2}}}{\sqrt{n}} \\
a_{n}=(-1)^{n} 2^{n} \\
a_{n}=(-1)^{n} 2^{-n} \\
a_{n}=\cos \left(\frac{1}{n^{2}}\right) \\
a_{n}=\frac{\sin ^{3}\left(n^{2}\right)}{\sqrt{n}}
\end{gathered}
$$

(Hint: Squeeze Theorem)

Question 2

Use the geometric series formula to find a formula for the partial sums S_{k} for the following series

$$
\sum_{n=1}^{\infty}(-1)^{n} 3^{-n}
$$

Then, calculate

$$
\lim _{k \rightarrow \infty} S_{k}
$$

to determine whether this series converges or diverges.

Question 3

Do the following series converge or diverge? If the series converges, find its value.

$$
\begin{gathered}
\sum_{n=1}^{\infty}(-1)^{n} \\
\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{2}{3}\right)^{n} \\
\sum_{n=1}^{\infty}(-1)^{n^{2}} \frac{2 n^{2}}{n^{2}+4} \\
\sum_{n=1}^{\infty} \frac{1}{3^{n}+2}
\end{gathered}
$$

Question 4

Suppose that you know that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Prove that

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}
$$

diverges.
Next, suppose you know that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges. Prove that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}}
$$

converges. (To do this, use the fact that a sequence that is monotonically increasing and bounded above is convergent).

