Math 1B: Discussion 4/9/19

Jeffrey Kuan
April 9, 2019

Question 1

Solve the following differential equations.

$$
\begin{gathered}
\frac{d y}{d x}=\frac{e^{x}}{\arctan (y)+2} \\
x^{2} y^{\prime}+4 x y^{\prime}+5 y^{\prime}=y^{2} \\
e^{x} \frac{d y}{d x}=y^{2}-4 \\
\frac{d y}{d x}=y e^{x+y}-e^{x} \cos (y)
\end{gathered}
$$

Question 2

The following two differential equations are different models for population growth $P(t)$. The first model, given by

$$
\frac{d P}{d t}=r P
$$

is called exponential growth, and the second model, given by

$$
\frac{d P}{d t}=r P\left(1-\frac{P}{K}\right)
$$

is called a logistic model. In both cases, r is called the growth factor and K (which only appears in the logistic model) is called the limiting capacity. These are both constants, and $P(t)$ is the function we are solving for.

- What order is each differential equation?
- Use separation of variables to find a general solution to each differential equation.
- For both equations, suppose we know that $r=2$. For the logistic equation, also suppose that $K=200$. Given the initial condition, $P(0)=10$, find a particular solution to each equation. Find $\lim _{t \rightarrow \infty} P(t)$ for both equations. Explain why K is called the limiting capacity of the logistic equation.

