Math 1B: Discussion 4/2/19

Jeffrey Kuan
April 2, 2019

Question 1

Find the particular solution to

$$
x y^{\prime \prime}=1
$$

that satisfies $y(1)=2, y^{\prime}(1)=1$.

Question 2

Check that $y=\frac{1}{C-x}$ is a solution to the following differential equation

$$
y^{\prime}-y^{2}=0
$$

Find the particular solution such that $y(0)=1 / 2$. Draw a direction field for this equation and graph the particular solution for it on top of the direction field.

Question 3

Check that $y=C_{1} e^{-x}+C_{2} x e^{-x}$ is a general solution to the differential equation

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

Find the particular solution that satisfies $y(0)=1, y^{\prime}(0)=-1$.

Question 4

Find a solution to each of the following differential equations.

$$
\begin{aligned}
y^{\prime} & =2 y \\
y^{\prime} & =\frac{1}{2 y}
\end{aligned}
$$

(Hint: For the second differential equation, try $y=x^{k}$ for some number k).
Find two linearly independent solutions to each of the following differential equations.

$$
\begin{aligned}
& y^{\prime \prime}-9 y=0 \\
& y^{\prime \prime}+9 y=0
\end{aligned}
$$

(Hint: Rewrite these as $y^{\prime \prime}=9 y$ and $y^{\prime \prime}=-9 y$).

Question 5

Draw a direction field for the differential equations

$$
\frac{d y}{d x}=x^{2}+y, \quad \frac{d y}{d x}=\frac{y}{x}, \quad \frac{d y}{d x}=\frac{1}{x-y}
$$

For the first two differential equations, use Euler's method with step size 0.5 to estimate $y(3)$ for the particular solution such that $y(1)=1$.

