Math 1B: Discussion 4/18/19 Solutions

Jeffrey Kuan

April 18, 2019

Question 1

$$
\begin{gathered}
(2+3 i)+(1+2 i)-(-2-i)=2+3 i+1+2 i+2+i=5+6 i \\
(1+i)(2+i)=2+i+2 i-1=1+3 i \\
\frac{1-i}{2+3 i}=\frac{1-i}{2+3 i} \cdot \frac{2-3 i}{2-3 i}=\frac{2-3 i-2 i-3}{4+9}=-\frac{1}{13}-\frac{5}{13} i
\end{gathered}
$$

Question 2

For $4-4 i$, we have that $r=4 \sqrt{2}$ and $\theta=\frac{7 \pi}{4}$. So we have that

$$
4-4 i=4 \sqrt{2}\left(\cos \left(\frac{7 \pi}{4}\right)+i \sin \left(\frac{7 \pi}{4}\right)\right)
$$

For $-3-3 \sqrt{3} i$, we have that $r=6$ and $\theta=\frac{4 \pi}{3}$. So we have that

$$
-3-3 \sqrt{3} i=6\left(\cos \left(\frac{4 \pi}{3}\right)+i \sin \left(\frac{4 \pi}{3}\right)\right)
$$

For $-\sqrt{3}+i$, we have that $r=2$ and $\theta=\frac{5 \pi}{6}$. So we have that

$$
-\sqrt{3}+i=2\left(\cos \left(\frac{5 \pi}{6}\right)+i \sin \left(\frac{5 \pi}{6}\right)\right)
$$

For the next complex number, compute that

$$
\cos \left(\frac{7 \pi}{6}\right)=-\frac{\sqrt{3}}{2}, \quad \sin \left(\frac{7 \pi}{6}\right)=-\frac{1}{2}
$$

So

$$
2\left(\cos \left(\frac{7 \pi}{6}\right)+i \sin \left(\frac{7 \pi}{6}\right)\right)=-\sqrt{3}-i
$$

For the final complex number, note that

$$
\cos \left(\frac{7 \pi}{4}\right)=\frac{\sqrt{2}}{2}, \quad \sin \left(\frac{7 \pi}{4}\right)=-\frac{\sqrt{2}}{2}
$$

So

$$
3 \sqrt{2}\left(\cos \left(\frac{7 \pi}{4}\right)+i \sin \left(\frac{7 \pi}{4}\right)\right)=3-3 i
$$

Question 3

$$
\begin{gathered}
4-4 i=4 \sqrt{2}\left(\cos \left(\frac{7 \pi}{4}\right)+i \sin \left(\frac{7 \pi}{4}\right)\right)=4 e^{\frac{7 \pi}{4} i} \\
-3-3 \sqrt{3} i=6\left(\cos \left(\frac{4 \pi}{3}\right)+i \sin \left(\frac{4 \pi}{3}\right)\right)=6 e^{\frac{4 \pi}{3} i} \\
-\sqrt{3}+i=2\left(\cos \left(\frac{5 \pi}{6}\right)+i \sin \left(\frac{5 \pi}{6}\right)\right)=2 e^{\frac{5 \pi}{6} i} \\
2\left(\cos \left(\frac{7 \pi}{6}\right)+i \sin \left(\frac{7 \pi}{6}\right)\right)=2 e^{\frac{7 \pi}{6} i} \\
3 \sqrt{2}\left(\cos \left(\frac{7 \pi}{4}\right)+i \sin \left(\frac{7 \pi}{4}\right)\right)=3 \sqrt{2} e^{\frac{7 \pi}{4} i}
\end{gathered}
$$

Question 4

We have that $1-\sqrt{3} i=2 e^{\frac{5 \pi}{3} i}$. So then

$$
\begin{aligned}
(1-\sqrt{3} i)^{40}=2^{40} e^{\frac{200 \pi}{3} i}=2^{40} e^{\frac{2 \pi}{3} i}=2^{40}\left(\cos \left(\frac{2 \pi}{3}\right)\right. & \left.+i \sin \left(\frac{2 \pi}{3}\right)\right) \\
& =2^{40}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=-2^{39}+2^{39} \sqrt{3} i
\end{aligned}
$$

Next, we have that $-1-\sqrt{3} i=2 e^{\frac{5 \pi}{3} i}$ and $\sqrt{2}+\sqrt{2} i=2 e^{\frac{\pi}{4} i}$. So

$$
\frac{-1-\sqrt{3} i}{\sqrt{2}+\sqrt{2} i}=\frac{2}{2} e^{\frac{5 \pi}{3} i-\frac{\pi}{4} i}=e^{\frac{17 \pi}{12} i}
$$

Then,

$$
\left(\frac{-1-\sqrt{3} i}{\sqrt{2}+\sqrt{2} i}\right)^{100}=e^{100 \cdot \frac{17 \pi}{12} i}=e^{\frac{425 \pi}{3} i}=e^{\frac{5 \pi}{3} i}=\cos \left(\frac{5 \pi}{3}\right)+i \sin \left(\frac{5 \pi}{3}\right)=\frac{1}{2}-\frac{\sqrt{3}}{2} i
$$

Question 5

We have that

$$
\begin{gathered}
e^{i \theta}=\cos (\theta)+i \sin (\theta) \\
e^{-i \theta}=\cos (-\theta)+i \sin (-\theta)=\cos (\theta)-i \sin (\theta)
\end{gathered}
$$

since $\cos (-\theta)=\cos (\theta)$ and $\sin (-\theta)=-\sin (\theta)$ since cosine is even and sine is odd.
Using these two formulas, simple algebra shows that

$$
\begin{gathered}
\frac{e^{i \theta}-e^{-i \theta}}{2 i}=\frac{1}{2 i}(\cos (\theta)+i \sin (\theta)-(\cos (\theta)-i \sin (\theta)))=\sin (\theta) \\
\frac{e^{i \theta}+e^{-i \theta}}{2}=\frac{1}{2}(\cos (\theta)+i \sin (\theta)+\cos (\theta)-i \sin (\theta))=\cos (\theta)
\end{gathered}
$$

