
Math 365C: Real Analysis I

The University of Texas at Austin, Spring 2021

Official times: MWF 1-2PM CST
Media: Canvas, Zoom, Piazza

(see “Course delivery and resources")

Instructor: Joe Kileel
Teaching assistant: Hunter Vallejos
Consultant: João Pereira
Office hours: schedule on Canvas

This course is an introduction to analysis. Analysis, together with algebra and
topology, form the central core of modern pure mathematics. Analysis is also in-
dispensable to the applied and computational mathematician. Beginning with the
notion of limit from calculus and continuing with ideas about convergence and the
concept of function that arose with the description of heat flow using Fourier series,
analysis is primarily concerned with infinite processes, the study of spaces where
these processes act and the application of differential and integral methods.

Specifically in this course, we will have three principle focuses. We will rigorously
develop the operations and concepts of single-variable calculus (limits, continuity,
derivative, Taylor series, Riemann integral). We will study abstract metric spaces
(capturing the general notion of distance). Time permitting, we will sketch the be-
ginnings of functional analysis (where functions are regarded as points in a space).

At risk of sounding melodramatic, learning real analysis is a rite of passage for un-
dergraduate math majors (both those with pure and applied interests). At the same
time, the present course is important to theoretically minded students in adjacent
disciplines, such as physics, computer science, statistics, electrical engineering, fi-
nance and economics. You might also find analysis good for your health: promoting
rigorous and abstract thinking, and empowering you to turn pictures into proofs.

Textbook

The course textbook is Walter Rudin’s Principles of Mathematical Analysis, 3rd ed.
We will cover the first five chapters and the seventh chapter. For Riemann integra-
tion, we will follow Chapter 7 of Stephen Abbott’s Understanding Analysis, 2nd ed.

As for optional supplementary reading, Real Mathematical Analysis, 2nd ed. by
Charles Pugh is nice for intuition and for having many pictures. Introduction to Met-

ric and Topological Spaces, 2nd ed. by Wilson Sutherland goes beyond our scope, but
certain parts might be helpful for understanding metric spaces.
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Course delivery and resources

Our course will be delivered using the following resources and structure:

• Lectures will be asynchronous: they will be prerecorded and posted on Panopto

integrated in Canvas (typically not later than the corresponding official lecture
time MWF 1-2PM CST). Handwritten notes produced during the lectures will
be saved as PDFs and also uploaded to Canvas.

• Exam review problem-solving sessions will be synchronous, occurring live on
Zoom, and will include students working in breakout rooms and some pre-
senting to the class. Also, the first informal organizational lecture on Wednes-
day, January 20 will occur live on Zoom.

• Office hours in this course will be plentiful: most weeks we will have six office
hours, typically at least one hour Tuesday–Friday. The instructor, teaching
assistant and course consultant will each generally offer two hours per week
over Zoom (see Canvas for a schedule). Please take advantage of office hours.

• Discussion boards will be set up on Piazza integrated with Canvas. Course-
related questions should be posted on Piazza rather than emailed to course
staff (with the exception of questions on personal matters). Course staff will
answer questions on Piazza and moderate discussion there. Students are en-
couraged to try their hand in answering some of their classmates’ questions
on Piazza, as this is a great way to learn yourself. Note that making mistakes
in Piazza is absolutely acceptable; we personally think it is also a good way
to learn. For students falling very near boundaries between letter grades, Pi-

azza participation might be taken into discretionary consideration; however,
for this to help boost a boundary case, it must be the case that the student has
posted to Piazza non-anonymously (visible to other students) exclusively.

Legal notes: course materials should not be distributed outside the course. The or-
ganizational meeting and some problem-solving sessions may be recorded. Class
recordings are reserved only for students in this class and are protected under FERPA.
The recordings should not be shared outside the class in any form. Violation of this
restriction by a student could lead to Student Misconduct proceedings.

Grading

Numerical scores will be computed per this breakdown:

• Homework: 20% (lowest two dropped)

• Midterm I: 20%

• Midterm II: 20%

• Final: 40%

Letter grades with plus and minuses will then be determined according to a curve.
The end distribution of letters will be similar to previous iterations of Math 365C.
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Homework

There will be roughly weekly homework assignments. They will be posted on Grade-

scope integrated with Canvas. Submission is through Gradescope

Altogether there will be nine homeworks. Each student’s lowest two homework
grades will be dropped. Late homework will not be accepted. You are encouraged to
discuss problems with classmates, but you must write all solutions that you submit
in your own words yourself. If you wish to typeset your solutions in LaTeX, you may
find the online editor Overleaf helpful. You should not search for answers to the
problems online, particularly if you wish to learn the material adequately for success
on the exams. Homeworks will be graded for mathematical correctness as well as
clarity of presentation; if we cannot make any sense of parts of your written proof,
then this poor communication must result in lost points. Since we also want you
to internalize important results from the textbook, on some of the homeworks, in
place of some problem solving, you will be asked to submit a short video explaining
in your own words certain key arguments or concepts from the course (details on
the videos to follow).

Exams

There will be two midterms and one final exam. Details on the formats and mech-
anism of proctoring will be announced in due course. At the start of the semester,
please reserve our planned dates (as makeup exams generally cannot be arranged).

• The first midterm will occur on Friday, March 5. It will cover lectures 2 – 11,
16–17 and homeworks 1 – 4 (real numbers, metric spaces, sequences).

• The second midterm will occur on Friday, April 16. It will cover lectures 21 –
30 and homeworks 5 – 8 (series, continuity, differentiability).

• The final will be open-course materials, untimed, take-home taking place dur-
ing morning, Wednesday, May 12 – 23:59pm, Monday, May 17. The final will
cover all parts of the course, but with emphasis on lectures 34 – 42 and the last
homeworks (integration, sequences and series of functions).

Several live exam review sessions will be offered. You will receive a list of exer-
cises on which you will work in Zoom breakout rooms. Students may present their
solutions, with our moderation or help. It should go without saying, but we empha-
size that the review sessions cannot possibly touch on every examinable topic for
which you are responsible. This holds true for the final as well as the midterms.

Consistent with the homeworks, exams shall be graded for mathematical cor-
rectness as well as clarity of presentation.

Breakdown of lectures

A tentative schedule for lecture content is shown on the last page.
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Course announcements

Important course announcements will typically be double-posted, on Canvas An-

nouncements and on Piazza. In any case, students are responsible for making them-
selves aware of important course announcements.

Accommodations

The University of Texas provides, upon request, appropriate academic accommoda-
tions for qualified students with disabilities. For more information, contact Services
for Students with Disabilities at 512-471-6259 or ssd@austin.utexas.edu

Academic integrity

The University of Texas holds you to the following Standards of Conduct:
https://deanofstudents.utexas.edu/conduct/standardsofconduct.php.
Violations of these Standards shall be treated seriously, and punished appropriately.

Blanket caveat

This syllabus is subject to change. Students are responsible for making themselves
aware of syllabus changes announced in Canvas Announcements and Piazza.
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Lecture # Date Topics Text
1 (informal, live) Wed, Jan 20

everyone says hi, organization of the
course, what’s a real number anyway? °

2 Fri, Jan 22
R as ordered field with least-upper-bound

property, archimedean property Chapter 1

3 Mon, Jan 25 Euclidean space, Dedekind cuts (sketch) Chapter 1
4 Wed, Jan 27 countable sets Chapter 2
5 Fri, Jan 29 metric space: basic definitions & examples Chapter 2
6 Mon, Feb 1 metric space: basic definitions & examples Chapter 2

7 (drop date) Wed, Feb 3 compact sets Chapter 2
8 Fri, Feb 5 compact sets Chapter 2
9 Mon, Feb 8 connected sets Chapter 2

10 Wed, Feb 10 convergent sequences in metric spaces Chapter 3

11 Fri, Feb 12
Cauchy sequences in metric spaces,

complete metric spaces Chapter 3

12 Mon, Feb 15 STORM °
13 Wed, Feb 17 STORM °
14 Fri, Feb 19 STORM °
15 Mon, Feb 22 STORM °
16 Wed, Feb 24 sequential compactness, completeness Chapter 3
17 Fri, Feb 26 numerical examples, lim sup & lim inf Chapter 3

18 (midterm review, live) Mon, Mar 1 problems session on Zoom °
19 (midterm review, live) Wed, Mar 3 problems session on Zoom °

20 (no lecture, exam) Fri, Mar 5 MIDTERM I (covering lectures 2-11, 16-17) °
21 Mon, Mar 8 BREAK °
22 Wed, Mar 10 root & ratio tests Chapter 3
23 Fri, Mar 12 power series, absolute convergence Chapter 3

° Mon, Mar 15 –
Fri, Mar 19 SPRING BREAK °

24 Mon, Mar 22 addition, multiplication, rearrangment of series Chapter 3
25 Wed, Mar 24 continuity of functions on metric spaces Chapter 4
26 Fri, Mar 26 continuity & compactness Chapter 4
27 Mon, Mar 29 uniform continuity, continuity & connectedness Chapter 4
28 Wed, Mar 31 examples, one-sided limits, limits at 1 Chapter 4
29 Fri, Apr 2 derivative of real-valued function (basics) Chapter 5
30 Mon, Apr 5 local extrema, Rolle’s theorem, mean value theorem Chapter 5

31 Wed, Apr 7
continuity of derivatives, L’Hôspital’s rule,

higher derivatives Chapter 5

32 Fri, Apr 9 Taylor’s theorem, remainder term, examples Chapter 5
33 (midterm review, live) Mon, Apr 12 problems session on Zoom °
34 (midterm review, live) Wed, Apr 14 problems session on Zoom °

35 (no lecture, exam) Fri, Apr 16 MIDTERM II (covering lectures 17-28) °

36 Mon, Apr 19
upper & lower Riemann integrals,

construction of Riemann-Stieltjes integral Abbott

37 Wed, Apr 21 refinements, continuous functions are integrable Abbott

38 Fri, Apr 23
monotonic functions, bounded functions with

finitely many discontinuities Abbott

39 Mon, Apr 26
first properties of Riemann-Stieltjes integral

(e.g., linearity, supremum bound), change of variable Abbott

40 Wed, Apr 28
fundamental theorem of calculus,

integration by parts Abbott

41 Fri, Apr 30
pointwise limit of functions, swapping

order of limits (counterexamples) Chapter 7

42 Mon, May 3 uniform convergence, examples Chapter 7

43 Wed, May 5
uniform convergence & continuity,
uniform convergence & integration Chapter 7

44 (final review, live) Fri, May 7 problems session on Zoom °

° date TBA
FINAL (covering all lectures,

with emphasis on lectures 32-43) °



Real Analysis: Homework 1

Due: 23:59 CST, January 30, 2021

1. Let S = {x 2 Q : x < 0 or x2 < 2}. Without appealing to the fact that Q
is dense in R, prove from first principles that if x 2 S, then there exists

y 2 S with y > x. Hint : let y = x + " where " 2 Q>0. Figure out how

small to set " so that y2 < 2.

2. Prove there does not exist an order on the complex field C making C into

an ordered field. Hint: i2 = �1.

3. For x = (x1, . . . , xk) and y = (y1, . . . , yk) in Euclidean space Rk
, declare

x �lex y if the leftmost nonzero entry of y�x is positive. Prove (Rk,�lex)

is an ordered set. One calls �lex the lexicographic order. Does (Rk,�lex)

have the least-upper-bound (LUB) property?

4. Let (S,<) be an ordered set. Let E ✓ S. We say that E is bounded below

and � is a lower bound for E if � 2 S and �  x for all x 2 E. We say

that ↵ 2 S is a greatest lower bound for E if ↵ is a lower bound for E and

↵ � � whenever � 2 S is also a lower bound for E.

(i) Show that when a greatest lower bound for E exists, it is unique.

The greatest lower bound for E is also called the infimum of E, denoted

inf E. We say that the ordered set (S,<) has the greatest-lower-bound

(GLB) property if: for all subsets E ✓ S that are nonempty and bounded

below, inf E exists.

(ii) Prove that (S,<) has the GLB property if it has the LUB property.

Remark : the converse holds too, so that GLB and LUB are equivalent.

5. Let the function f : R ! R be given by f(x) = x3
+x+1. By considering

E := {x 2 R : f(x) < 0} ✓ R and using the least-upper-bound property

for R, prove that f has a root in R (i.e., there exists r 2 R such that

f(r) = 0). Please explain carefully. Hint: adapt the argument I used in

lectures to show a positive n-th root of a positive real number exists in R.
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Real Analysis: Homework 2

Due: 23:59 CST, February 7, 2021

1. Given a set T , let P(T ) denote the set of all subsets of T . One calls
P(T ) the power set of T . For example, P({1, 2}) = {;, {1}, {2}, {1, 2}}.
Consider the following subset of the power set of the natural numbers:

I := {S 2 P(N) : S is infinite}.

Exhibit an explicit bijection f : I ! R, or prove a bijection doesn’t exist.
Hint: first see if you can biject I with the interval (0, 1] ✓ R using binary
strings. If so, can you biject (0, 1] with (0, 1), and then (0, 1) with R?

2. I proved in lectures that the set R is uncountable. Prove nonetheless that
the metric space R (with its usual metric) is second-countable. A metric
space (M,d) is said to be second-countable if there exists a countable
collection U = {Ui}1i=1 of open sets Ui ✓ M such that any open set in M
may be written as a union of a subcollection of U . Hint: Q is countable.

3. For x = (x1, . . . , xk),y = (y1, . . . , yk) 2 Rk, define

d1(x,y) :=
kX

i=1

|xi � yi|.

(i) Prove that d1 is a metric on Rk.
(ii) People sometimes call d1 the Manhattan metric. By means of a sketch
in R2, explain why this is reasonable. Hint: If you don’t know, the streets
in Manhattan are arranged in a grid.
(iii) Write d2 for the metric on Rk induced by the Euclidean inner product,

d2(x,y) := kx� yk2 =
qPk

i=1(xi � yi)2. Prove that for all x,y 2 Rk,

1p
k
d1(x,y)  d2(x,y)  d1(x,y).

Hint: for one of these inequalities, use Cauchy-Schwarz.
(iv) Deduce that (Rk, d1) and (Rk, d2) have the same open sets. We can
express this by saying that d1 and d2 are topologically equivalent.
(v) In R2, sketch the open ball centered at the origin of unit radius with
respect to d1, and likewise with respect to d2.
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4. Let M be a metric space with metric d. For x 2 M and A ✓ M , define

d(x,A) := inf
a2A

d(x, a).

(Recall from HW1 that ‘inf’ denotes infimum, or greatest lower bound.)
(i) Show that if y is another point of M ,

d(y,A)  d(y, x) + d(x,A).

(ii) Fill in the blanks: d(x,A) = 0 if and only if x is a point in A or a
of A if and only if x is a point in the of A.

5. Fix a prime number p. Given n1, n2 2 Z, define dp(n1, n2) to be p�r where
pr (r 2 Z�0) is the largest power of p that divides n1 � n2 if n1 6= n2,
and define dp(n1, n2) to be 0 if n1 = n2. For example, d2(5, 17) = 2�2

because 22 divides 5 � 17 = �12 but 23 does not. Prove that dp satisfies
the ultrametric inequality :

dp(n1, n3)  max (dp(n1, n2), dp(n2, n3)) 8n1, n2, n3 2 Z.

Deduce that dp defines a metric on Z. This is called the p-adic metric.
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Real Analysis: Homework 3

Due: 23:59 CST, February 27, 2021

1. Give an example of a metric space M which has a closed ball of radius 1.001 which contains

100 disjoint closed balls of radius one. Hint : tweak the discrete metric.

2. Record a video in which you discuss the following capstone result:

A subset of Euclidean space Rk
is compact if and only if it is closed and bounded.

In your own words, you should explain the meaning of this result, outline the proof in reason-

able but not necessarily total detail, and provide an example as well as a non-example. The

video should include mathematical formulas as my lectures do, which you can write out by

hand or in slides. Please keep the video under six minutes. See Canvas Announcements
or Piazza for the instructions on submitting your video, which must be done
separately to the submission of this homework.

3. We say a metric space M has the Heine-Borel property if all closed bounded subsets of M
are compact. By Question 1, Euclidean space (with its usual metric) has the Heine-Borel

property. Prove that Q (with the subspace metric induced from R) does not have Heine-Borel

property.

4. Let M be a metric space. If E ✓ M is a maximal (under inclusion) connected subset of M ,

we say that E is a connected component of M . This means: E is connected and if E0 ✓ M is

also connected with E ✓ E0
, then E0

= E.

(i) Prove that the connected components of any metric space partition the metric space.

(ii) Find a compact subset K ✓ R for which R\K has infinitely many connected components.

Hint : remember the fact from lectures that a subset of R is connected if and only if it is an

interval.

5. Given two metric spaces (M,dM ) and (N, dN ), consider the cartesian product M ⇥ N and

define the function dM⇥N : (M ⇥N)⇥ (M ⇥N) ! R by

dM⇥N ((x1, y1), (x2, y2)) :=
p
dM (x1, x2)

2 + dN (y1, y2)2
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for all (x1, y1), (x2, y2) 2 M ⇥N .

(i) Prove that dM⇥N is a metric on M ⇥N . We call this a product metric.

(ii) Let W be an open set in M ⇥N . Prove that W =
S

↵ U↵ ⇥ V↵ for some open sets U↵ in

M and some open sets V↵ in N . We say M ⇥N has the product topology.

(iii) Prove that if (M,dM ) and (N, dN ) are both compact, then so is (M ⇥N, dM⇥N ). Hint :

Consider an open cover of M ⇥N . You need to show there exists a finite subcover. By part

(ii), argue that you may assume the open cover is of the form {U↵ ⇥ V↵}↵ where U↵ and V↵

are open sets in M and N , respectively. Now for each x 2 M , consider {V↵ : x 2 U↵}. Argue

that this is an open cover of N . Now invoke compactness of N . Now figure out how to use

compactness of M . Alternative Hint : If you prefer not to work with the open cover definition

of compactness here, you can instead do this question using the characterization that a set K
is compact if and only if every infinite subset of K has a limit point in K.

(iv) Prove that if (M,dM ) and (N, dN ) are both connected, then so is (M ⇥N, dM⇥N ). Hint :

Suppose M ⇥ N = W1 tW2 (disjoint union) for open sets W1,W2 ✓ M ⇥ N with W1 6= ;.
You need to show W2 = ;. Use part (ii) and reason somewhat similarly to part (iii), first

hinted approach.
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Real Analysis: Homework 4

Due: 23:59 CST, March 2, 2021

1. Directly using the ✏�N definition of the limit of a sequence, determine

lim
n!1

p
n2 + 3n� n.

2. Find the limit inferior and superior of the sequence (sn) in R given by:

s1 = 0; s2m :=
s2m�1

2
; s2m+1 :=

1

2
+ s2m,

where the above recursion holds for all m 2 N.

3. Let (xn) be a sequence in a compact metric space M . Suppose (xn) does
not converge. Prove that it has two convergent subsequences with di↵erent
limits.

4. Suppose (an)1n=1 is a Cauchy sequence in a metric space M such that
there exists a subsequence (ank)

1
k=1 converging to p 2 M . Prove that the

whole sequence (an)1n=1 converges to p.

5. LetM denote the set of all bounded real sequences x = (xn). For x, y 2 M ,
define d(x, y) := supn|xn � yn|.

(i) Prove that (M,d) is a metric space. We call d the supremum metric.

(ii) Prove that (M,d) is complete.

(iii) Exhibit a bounded sequence in M with no convergent subsequence.
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Real Analysis: Homework 5

Due: 23:59 CDT, March 26, 2021

1. In this exercise, we work through basic properties of limit superiors and limit inferiors. Let

(an)1n=1 be a real sequence.

(a) Prove that the maximal/minimal subsequential limit definition of

lim sup
n!1

an and lim inf
n!1

an

given in lectures and the textbook is equivalent to the following:

lim sup
n!1

an = lim
n!1

✓
sup
m�n

am

◆
and lim inf

n!1
an = lim

n!1

✓
inf
m�n

am

◆
.

(b) Suppose ↵,�, �, � 2 R are such that

↵ > �, � = lim sup
n!1

an, � = lim inf
n!1

an, � > �.

Prove there exists N 2 N such that

↵ > an > � for all n � N.

2. Decide (with justification) whether each of the following series converges or diverges. Where

not indicated, ⌃ is over n from 1 to 1.

(a)
P1

n=5
1

2n�n2

(b) [Extra Credit]
P sin(n)

n Hint: You may assume Theorem 3.42 from the book.

(c)
P

(
p
n+ 1�

p
n)

(d)
P p

n+1�
p
n

n

(e) 1� 3
4 +

4
6 � 5

8 +
6
10 � 7

12 + . . .

(f)
P

( n
p
n� 1)

n

1



(g)
P�

n!
�
nn

�

(h)
P1

n=2

�
1
�
log(n)log(n)

�

(i)
P

log(
n+1
n )

(j)
P 1

1+zn where z 2 R is fixed (your answer may depend on z)

3. For each of the following power series in z 2 R, determine (with justification) the radius

of convergence R and whether the series converges absolutely, converges non-absolutely or

diverges at the boundary points z = ±R (in cases when R is finite). Here each ⌃ is over n
from 1 to 1. Hint: If you try to apply the lim sup expression for the radius of convergence,

remember that the limit superior of a sequence simply equals the limit when the limit exists.

(a)
P

n3zn

(b)
P 2n

n! z
n

(c)
P 2n

n2 zn

(d)
P n3

3n z
n

4. Consider the series ⌃an given by

1
2 � 1

2 +
1
4 � 1

4 +
1
4 � 1

4 +
1
8 � 1

8 +
1
8 � 1

8 +
1
8 � 1

8 +
1
8 � 1

8 +
1
16 � 1

16 + . . .

(a) Explain why ⌃an converges non-absolutely.

(b) Discuss (with justification) an explicit rearrangement ⌃a0n of ⌃an such that

lim sup
n!1

s0n = 100 and lim inf
n!1

s0n = �1,

where (s0n) is the sequence of partial sums of the rearrangement
P

a0n.

5. For a sequence (bn)1n=1 ✓ R, the infinite product

1Y

n=1

bn = b1b2b3 . . .

is defined to be the limit of partial products,

1Y

n=1

bn := lim
n!1

pN where pN :=

NY

n=1

bn = b1b2 . . . bN ,

when this limit exists (else the infinite product is divergent).
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(a) Consider infinite products in which each factor is at least 1, i.e.,

1Y

n=1

(1 + an) where an 2 R�0.

Prove this infinite product converges if and only if the series ⌃
1
n=1an converges. Hint :

for one direction, you may assume without proof that log3(1 + x)  x for all x � 0.

(b) The following formula for ⇡ was discovered in the 1600s:

⇡ = 2

1Y

n=1

4n2

4n2 � 1
= 2

✓
2

1
· 2
3

◆✓
4

3
· 4
5

◆✓
6

5
· 6
7

◆✓
8

7
· 8
9

◆
. . .

Using part (a), prove that the infinite product indeed converges (you need not verify the

limit is ⇡). Using a computer or calculator, compute the partial products 2
QN

n=1
4n2

4n2�1
to three digits after the decimal for N = 1, . . . , 10.

6. [Extra Credit] In this bonus exercise, we consider attaching a limit definition to a double

series.

Let (am,n : m,n 2 N) be a doubly indexed infinite array of real numbers.

• For each m, we call
P1

n=1 am,n := limN!1
PN

n=1 am,n the m-th row series.

• For each n, we call
P1

m=1 am,n := limM!1
PM

m=1 am,n the n-th column series.

• We call
P1

m=1

P1
n=1 am,n := limM!1

PM
m=1

⇣
limN!1

PN
n=1 am,n

⌘
the row-first iter-

ated series.

• We call
P1

n=1

P1
m=1 am,n := limN!1

PN
n=1

⇣
limM!1

PM
m=1 am,n

⌘
the column-first

iterated series.

• We call
P1

m,n=1 am,n := limP!1
PP

m,n=1 am,n the double series.

We say that an iterated series converges if and only if each inner limit converges and the series

of such (the outer limit) also converges.

(a) Can you find (am,n) for which each row series diverges to +1, each column series diverges

to �1, yet the double series converges?

(b) Prove that if the iterated series
P1

m=1

P1
n=1 |am,n| converges, then

1X

m=1

1X

n=1

am,n,
1X

n=1

1X

m=1

am,n,
1X

m,n=1

am,n

all converge to the same real number.
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Real Analysis: Homework 6

Due: 23:59 CDT, April 4, 2021

Unless stated otherwise, R and Rn are equipped with their usual Euclidean metrics.

1. In this exercise, we get hands-on experience with verifying if a function is continuous or not.

(a) Show directly from the " � � definition of continuity that the function f : R ! R given
by f(x) =

p
|x| is continuous.

(b) Let X be any nonempty set. Recall the discrete metric on X is given by

d(x, x0) =

(
1 if x 6= x0

0 if x = x0.

What are the open sets in (X, d)? Which functions f : X ! R are continuous? Which
functions f : R ! X are continuous?

(c) Every rational number x 2 Q can be written uniquely as p/q where p 2 Z, q 2 Z>0, and p
and q share no common factor (we are just writing x in lowest terms). Define the function
f : R ! R by

f(x) =

(
1/q if x is rational

0 if x is irrational.

Prove f is continuous at every irrational point, and discontinuous at every rational point.

2. A (real multivariate) polynomial is a function f : Rn ! R of the form f(x) =
P

↵2A c↵x↵

where A ✓ (Z>0)n is a finite subset (the set of exponents), c↵ 2 R are scalars (the coe�cients)
and x↵ := x↵1

1 . . . x↵n
n where ↵ = (↵1, . . . ,↵n) 2 (Z>0)n and x = (x1, . . . , xn) 2 Rn (the

monomials). For example, f(x1, x2, x3) = x3
1 � 10x1x2x3 + 0.5x2

1 � x2 + 1 is a polynomial
function R3 ! R.

(a) By using propositions from lecture together with induction, prove that every polynomial
f : Rn ! R is a continuous function.

(b) Let f1, . . . , fk be polynomial functions Rn ! R. Prove that the set of common zeros

Z(f1, . . . , fk) := {x 2 Rn : f1(x) = . . . = fk(x) = 0}

1



is a closed subset of Rn. One also calls this set the solution set to the polynomial system
defined by f1, . . . , fk (or in other language, the real algebraic variety cut out by f1, . . . , fk).

3. Let f : (X, dX) ! (Y, dY ) be a function between metric spaces. Define the graph of f to be

�f := {(x, f(x)) : x 2 X} ✓ X ⇥ Y.

Equip X ⇥ Y with the product metric from HW3 Q5,

dX⇥Y ((x1, y1), (x2, y2)) :=
p
dX(x1, x2)2 + dY (y1, y2)2 for all (x1, y1), (x2, y2) 2 X ⇥ Y.

Prove that if f is continuous then its graph �f is a closed subset of (X ⇥ Y, dX⇥Y ).

Remark : The converse also holds, so that f is continuous if and only if its graph is closed.

4. Record a video in which you discuss the following capstone result:

The continuous image of a compact set is compact. As a corollary, we have the extreme
value theorem: any real-valued continuous function with compact domain is bounded and

attains its bounds.

In your own words, you should explain the meaning of this result, outline the proof in reason-
able but not necessarily total detail, and provide an example as well as a non-example. The
video should include mathematical formulas as my lectures do, which you can write out by
hand or in slides. Please keep the video under six minutes. See Canvas Announcements
or Piazza for the instructions on submitting your video, which must be done
separately to the submission of this homework.

5. Recall from HW2 Q4 how we define the distance between the subset of a metric space and a
point in the metric space. If (M,d) is a metric space, A ✓ M nonempty and x 2 M , then

d(x,A) := inf
a2A

d(x, a).

(a) Show that if A is compact, then this infimum is attained, i.e., there exists a⇤ 2 A such
that d(x, a⇤) = d(x,A).

(b) Give an example where A is not compact and the infimum is not attained.

6. [Extra Credit] Consider the great circle C on the surface of Earth passing through your
favorite point in Austin, Texas and the North Pole. Prove that at any instant in time there
must exist two antipodal (or diametrically opposite) points p, p0 2 C at which the surface
temperature exactly matches. Please assume the surface of Earth is a perfect sphere so that
C is a perfect circle, and that temperature is a continuous real-valued function of position.
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Real Analysis: Homework 7

Due: 23:59 CDT, April 13, 2021

1. In this exercise, we gain experience in applying the fact the continuous image of a connected

set is connected and in applying its corollary, the intermediate value theorem.

(a) Consider a polynomial function f : R ! R of odd degree. This means f(x) = cdxd
+

cd�1xd�1
+ . . . + c0 for x 2 R and some fixed coe�cients cd, . . . , c0 2 R with cd 6= 0 and

d an odd positive integer. Prove that f must have a real root, i.e., there exists r 2 R
such that f(r) = 0. Hint: What can you say about f(x) when x is a very large positive

number and when x is a very large negative number? Please prove it. Now assuming

HW6 Q2, apply the intermediate value theorem to conclude.

(b) Recall HW2 Q1. Back then, one part of our solution was to construct a bijection from (0, 1]
to (0, 1). Prove that there does not exist a continuous bijection g : (0, 1] ! (0, 1). Hint:

Assume for a contradiction that there does exist a continuous bijection g : (0, 1] ! (0, 1).
What can you say about g ((0, 1))?

2. (a) Directly using the "� � definition of the limit of a function, prove the Squeeze Theorem:

Let I ✓ R be an interval having a 2 R as a limit point. Let f, u, ` : I \ {a} ! R. Assume

• `(x)  f(x)  u(x) for all x 2 I \ {a}, and
• limx!a `(x) = limx!a u(x) = L for some L 2 R.

Then limx!a f(x) exists and equals L as well.

(b) Consider the function F : R ! R defined by

F (x) =

(
x+ x2

sin(
1
x ) x 6= 0,

0 x = 0.

Show that F is di↵erentiable everywhere and determine F 0
(x) for each x 2 R. Hint: To

show F is di↵erentiable at 0, use the Squeeze Theorem (part (a)).

(c) For F as in part (b), show that while F 0
(0) > 0 there does not exist � > 0 such that F is

monotonically increasing on (��, �). Hint: Since F 0
exists, show from the limit definition

of a derivative that if F were monotonically increasing on (��, �) then we would have

F 0
(x) � 0 for all x 2 (��, �). Now consider the expression for F 0

(x) from part (b).

1



(d) The behavior in part (c) is possible only because F 0
is not continuous at 0. Please prove

that F 0
is not continuous at 0 by exhibiting a sequence (xn)

1
n=1 ✓ R with xn ! 0 and

F 0
(xn) 9 F 0

(0) as n ! 1. Nevertheless, F 0
does “assume intermediate values” (in

agreement with Theorem 5.12 of Rudin). Please directly verify that for all � 2 R with

F 0
(0) < � < F 0

(
1
⇡ ) there exists x 2 (0, 1

⇡ ) such that F 0
(x) = �.

3. Suppose f 0
(x) > 0 for all x 2 (a, b). Prove that f is strictly increasing in (a, b), and let g be

its inverse function. Prove that g is di↵erentiable, and that

g0(f(x)) =
1

f 0(x)
for x 2 (a, b).

Hint: Like in class, use the mean value theorem to show that f is strictly increasing. So f is

a bijection onto its image, and g exists. Next, you can show g is continuous at each point of

its domain by considering a suitable restriction of f and remembering the fact a continuous

bijection out of a compact interval has a continuous inverse (Lecture 20). Finally, you can

prove g is di↵erentiable by directly inspecting the limit definition of a derivative applied to g.

4. Let f : [a, b] ! R. We say that f is Lipschitz continuous if there exists a constant C 2 R
such that |f(x)� f(y)|  C|x� y| for all x, y 2 [a, b].

(a) Prove that if f is Lipschitz continuous then f is continuous.

(b) Prove that if f is continuously di↵erentiable (which is to say f 0
exists everywhere on [a, b]

and is a continuous function) then f is Lipschitz continuous. Hint: Mean value theorem.

(c) Suppose on the other hand that f : [a, b] ! R satisfies |f(x) � f(y)|  (x � y)2 for all

x, y 2 [a, b]. Prove that f is constant.

5. Suppose that f is defined in a neighborhood of x, and suppose f 00
(x) exists. Show that

lim
h!0

f(x+ h) + f(x� h)� 2f(x)

h2
= f 00

(x).

Hint: Use L’Hôspital’s rule (just once) and then use the limit definition of a derivative.
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Real Analysis: Homework 8

Due: 23:59 CDT, April 30, 2021

The first two exercises are based on Taylor’s theorem (Lecture 24). The second is
for extra credit. The last three exercises are about Riemann integrability.

1. Let f(x) =
p
x. Express f(1+ h) as a quadratic in h plus a remainder term involving h3. By

taking h = �0.02, find an approximate value for
p
2 and prove it is accurate to seven digits.

Hint : Notice
p
0.98 = 0.7

p
2.

2. [This entire exercise is for extra credit.] Suppose f : [a, b] ! R is twice di↵erentiable,
f(a) < 0, f(b) > 0, there exists � > 0 such that f 0(x) � � for all x 2 [a, b] and there exists
M � 0 such that 0  f 00(x)  M for all x 2 [a, b]. So f is strictly increasing (by f 0 > 0)
and convex (by f 00 � 0). Since f is continuous (being di↵erentiable), strictly increasing and
f(a) < 0 and f(b) > 0, please note there exists a unique ⇠ 2 (a, b) such that f(⇠) = 0. In this
bonus exercise, we are going to develop Newton’s method, which is an important numerical
method for computing ⇠. One sometimes describes Newton’s method as a root-finding method.

(a) By trying various values of f , suppose we find x1 2 (a, b) such that f(⇠) > 0. Then
notice x1 2 (⇠, b) since f is strictly increasing and f(⇠) = 0 by definition of ⇠. Let us
now define a sequence of real numbers (xn)

1
n=1 by the recursion

xn+1 := xn � f(xn)

f 0(xn)
(n 2 N).

Please interpret this formula geometrically in terms of a tangent to the graph of f .
Remark : Generating such a sequence is what we mean by running Newton’s method.
We call each iteration (passing from xn to xn+1) a Newton step.

(b) Using the Mean Value Theorem, prove ⇠  xn+1 < xn (n 2 N). Also show

lim
n!1

xn = ⇠.

(c) Using Taylor’s theorem, show that there exists tn 2 (⇠, xn) (n 2 N) such that

xn+1 � ⇠ =
f 00(tn)

2f 0(xn)
(xn � ⇠)2.

(d) Set A := M/(2�). Using part (c) and the assumed bound on f 00, deduce

0  xn+1 � ⇠  1

A
[A(x1 � ⇠)]2

n

(n 2 N).

1



Remark : Notice the exponent is 2n, which grows rapidly with n. So, if the bracketed
quantity A(x1� ⇠) is strictly less than 1 (this depends on the initialization x1), then the
bound on the RHS above decays rapidly to 0 indeed. The number of correct digits of xn

(as compared to ⇠) roughly doubles every time we perform a constant number of Newton
steps. In numerical analysis, one refers to this behavior as quadratic convergence.

(e) Consider f : R ! R given by f(x) = x1/3. Using computer software or a calculator,
perform Newton’s method (the procedure in part (a)). What happens? Please reconcile.

3. (a) Let f : [0, 1] ! R be the indicator function of Q \ [0, 1]. This means, for x 2 [0, 1],

f(x) =

(
1 if x is rational;

0 if x is irrational.

Prove that f is not Riemann integrable. Hint : What is U(f)? What is L(f)?
(b) Recall HW6 Q1(c). Consider the function defined there restricted to [0, 1]. That is, let

g : [0, 1] ! R be given by

g(x) =

(
1/q if x 2 Q and x = p/q in lowest terms with p 2 Z, q 2 Z>0;

0 if x /2 Q.

Prove that g is Riemann integrable and
R 1
0 g = 0. Hint : Try to verify the " � P

characterization of integrability.

4. Let f : [a, b] ! R be increasing throughout [a, b] (i.e., f(x)  f(y) whenever a  x  y  b).
Prove that f is integrable on [a, b]. Hint : Verify the "�P characterization of integrability by
considering a partition of equispaced breakpoints.

5. Recall the “polished” definition I presented in lecture of the Riemann integral: a bounded

function f : [a, b] ! R is integrable with
R b
a f = A if its upper integral and lower integral

both equal A, that is, U(f) = A = L(f). Actually, Riemann originally defined his integral
di↵erently, in a way corresponding to the Riemann sums you may have seen in a calculus class:

Riemann’s Original Definition: A bounded function f : [a, b] ! R is integrable withR b
a f = A if for all " > 0 there exists � > 0 such that for any partition P = {x0, . . . , xn} of

[a, b] with a = x0 < x1 < . . . < xn�1 < xn = b and any sample points ck 2 [xk�1, xk] (each
k) such that xk � xk�1 < � (each k), it holds that

���
nX

k=1

(xk � xk�1)f(ck)�A
��� < ".

Prove if f satisfies Riemann’s original definition, then f satisfies the definition from lectures.
Remark : Actually, the converse holds too (proof omitted). So Riemann’s original definition
is equivalent to the one from lectures. In your opinion, is the construction I gave easier?
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Real Analysis: Homework 9

Due: 23:59 CDT, May 9, 2021

The first two exercises are based on the Fundamental Theorem of
Calculus. The last three exercises are about uniform convergence.

1. Record a video in which you discuss the following capstone result:

The Fundamental Theorem of Calculus (both parts).

In your own words, you should explain the meaning / relevance of this result, say a few words

about its proof and what the ingredients are, and provide an example for each part of FTC.

The video should include mathematical formulas as my lectures do, which you can write out by

hand or in slides. Please keep the video under six minutes. See Canvas Announcements
or Piazza for the instructions on submitting your video, which must be done
separately to the submission of this homework.

2. Let g : [a, b] ! R be di↵erentiable and assume g0 : [a, b] ! R is continuous. Let f : [c, d] ! R,
be continuous and assume the range of g is contained in [c, d], so that the composition f � g
is properly defined.

(a) Why is f the derivative of some function? How about (f � g)g0?
(b) Prove the change-of-variable formula

Z b

a
f(g(x))g0(x)dx =

Z g(b)

g(a)
f(t)dt.

3. Let fn, gn : E ! R be functions on a set E. Assume (fn)1n=1 and (gn)1n=1 converge uniformly.

(a) Prove that (fn + gn)1n=1 converges uniformly.

(b) In addition, assume fn and gn (each n) are bounded functions. Prove that (fngn)1n=1

converges uniformly.

4. Prove that the series
1X

n=1

(�1)
nx

2
+ n

n2

converges uniformly in every bounded interval of R, but does not converge absolutely for any

value of x.
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5. Let {x} 2 [0, 1) be the fractional part of x 2 R. This means {x} = x� bxc, where bxc 2 Z is

the floor of x, i.e., the greatest integer less than or equal to x. Consider the function

f(x) =
1X

n=1

{nx}
n2

(x real).

Find all discontinuities of f , and show that they form a countable dense subset of R. Nonethe-

less, show that f is Riemann-integrable on every bounded interval.

2


