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Abstract

In complex geometry Kodaira’s theorem tells us that on a Kähler manifold sufficiently high powers
of positive line bundles admit global holomorphic sections. Donaldson’s divisor theorem is a symplectic
analogue of this theorem, proving the existence of asymptotically holomorphic sections for positive line
bundles on a symplectic manifold with almost complex structure. In this talk, we will outline the methods
used in Donaldson’s proof, and state some applications of Donaldson’s divisor theorem to symplectic
geometry.

0.1 Complex Analogues
We start with a few recollections from complex geometry.

Definition 0.1
Ample Line Bundle

Let M be a complex manifold. A complex line bundle L →M is called ample if there exists k such
that L⊗k has enough sections to set up an embedding to CPn.

Ample line bundles come with a very strict geometric condition on them:

Definition 0.2
Positive Line Bundle

A complex line bundle L→M is called positive if it’s Chern class c1(L) is represented by some Kähler
metric.

Proposition 0.3 All ample line bundles are positive.

Proof. The Fubini-Study metric is the first Chern class of O(1), and L⊗k is the pullback of O(1). ∎

In particular, M is Kähler. We also have the converse statement:

Proposition 0.4 All positive line bundles are ample.

Proof. This is the content of the Kodaira embedding theorem. ∎

Theorem 0.5
Kodaira Embedding
Theorem

If (M,ω) is a compact Kähler manifold and L is a line bundle with curvature form ω, then M is
projective, and ω is a positive integer multiple of the pullback of the Fubini-Study Metric.

In addition, we get the following corollary

Corollary 0.6 Let h be the first Chern class of a positive line bundle on M . Then for sufficiently large k, there exists
complex submanifold N such that N realizes the Poincaré dual of kh.

This says that every positive line bundle has a power represented by a divisor. We would like to reformulate
these statements for symplectic manifolds with compatible pseudoholomorphic structure.

0.2 Symplectic Goals
The goal of Donaldson’s paper [3] is to give us a related theory in the case of symplectic manifolds. While
we cannot talk about holomorphic functions in this setting, we can talk about pseudoholomorphic functions
coming from an compatible almost complex structure J on M .

Definition 0.7 Let E →M be a complex vector bundle compatible with an almost complex structure on M . Let ∇ be
the natural connection arising from the symplectic structure. Then ∇ decomposes as ∂ + ∂̄, complex
linear and anti-linear parts.

• We say that a map is pseudoholomorphic s ∶M → C is pseudoholomorphic if ∂̄s = 0.
• We say a sequence of sections sk is asymptotically holomorphic if there exist constants (Cp)p∈N

such that for all k and at every point in M , we have the following bounds.
– ∣sk ∣ ≤ C0

– ∣∇psk ∣gk ≤ Cp
– ∣∇p−1∂̄sk ∣gk ≤ Cpk−1/2 for all p ≥ 1.

• We say that a sequence of sections are uniformly transverse to 0 if there exists a constant η > 0
independent of k such that the sections sk are η-transverse to 0 in the sense that everywhere
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where ∣sk(x)∣ < η, the linear map ∇sk(x) ∶ TM → (Ek)x is surjective with right inverse of norm
less than η−1 with respect to the metric gk.

The main result is the following :

Theorem 0.8
Donaldson’s Divisor
Theorem

Let (M,ω) be a symplectic manifold with compatible almost-complex structure. Let L → M be
a complex line bundle with Chern class [ω/2π]. Then there exists a constant C such that for large
enough k there is a section s of L⊗k which is asymptotically holomorphic and uniformly transverse in
the sense that

∣∂̄s∣ < C√
k
∣∂s∣

on the zero locus of s.

While a symplectically holomorphic section does not give us a pseudo-holomorphic submanifold, it
is enough to give a symplectic submanifold. The bound, in fact, gives us a sequence of symplectic
submanifolds which are asymptotically pseudo-holomorphic, which is very surprising.

Lemma 0.9
[3]

Let (M,ω) be a compact symplectic manifold with integer symplectic form. Suppose L →M is a
complex line bundle, and let s be a smooth section of L. Let W be the zero locus of s (a smooth
submanifold of codimension 2). Let ∂, ∂̄ be the complex linear and antilinear components of the
connection ∇ coming from the symplectic and almost holomorphic structure. If ∣∂̄s∣ < ∣∂s∣ everywhere
on W , then W is a symplectic submanifold.

The existence of such sections gives us something similar to the Kodaira embedding theorem.

Theorem 0.10
[1]

Let (M,ω) be a compact symplectic 4- manifold with integer symplectic form. There exists a map
f ∶X → CP2 which is “ε-branched covering.”

Here, an ε-branched covering is an ε− approximate holomorphic map which is locally a diffeomorphism, a
branched covering, or a cusp covering. The proof of 0.2 requires creating 3 approximately holomorphic
sections of a line bundle.

1 Outline of Proof of 0.2
For a proof of this theorem , we follow [3] and use a simplification from [2] in our argument.
Donaldson’s proof has 2 parts.

1. The first part is to do a local construction. This is a series of estimates that allows us to transfer
to local Darboux coordinates, and create sections s of Lk so that ∂̄s is small everywhere on M .
We won’t be able to do this globally, but we’ll create a bunch of local sections that have desired
asymptotic holomorphic bounds. However, they will not be uniformly transverse (in fact, they will
fail this requirement very badly).

2. The second section is a “global”, and it shows that ∂s of these sections is not small on the zero set.
We use an argument from ?? to get this estimate.

2 Local Bounds
First we construct local sections

Lemma 2.1 Given any point x ∈X , for all large enough k, there exist asymptotically holomorphic section sk,x of
L⊗k such that

• σk,x ≥ c0 at every point of gk radius 1 centered at x.
• The sections σk,x have uniform Gaussian decay from x in C2 norm.

We do this by taking a very specific coordinate chart:

Lemma 2.2 Let (M,ω) be a symplectic manifold, and k an integer. There exists a constant c > 0 and local Darboux
coordinates zik ∶ (X,x) → (Cn,0) such that the following estimates hold uniformly in x and k at
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2 Local Bounds 3

every point in the ball Bgk(x, c
√
k):

∣zk(y)∣ =O(dist(x, y))

∣∂̄zk(y)∣gk =O (distgk(x, y)√
k

)

∣∇r∂̄zk ∣gk =O ( 1√
k
)

∣∇rzk ∣gk =O(1)

Idea of Proof. The idea is as we increase k, we cause the almost complex structure to look more and more
like a complex structure. By Darboux’s theorem we choose a chart around x ∈X called φ ∶ B →X such
that φ∗(ω) is the standard form on B ⊂ Cn. We may suppose that all derivatives of φ are bounded and
independent of x. We may also assume that the pullback of J agrees with the complex structure of B at
the origin. We may relate the complex structure Jstd to φ∗J by a map µ ∶ Λ1,0(B)→ Λ0,1(B) so that the
space of φ∗J complex forms is represented by the graph of µ. Since the structures agree at 0, we have that
µ(0) = 0.
We cannot in general make µ constantly 0– the obstruction to removing the first derivative of µ is the
Nijenhius tensor. However, when we are willing to work on smaller and smaller balls, the bundle map µ
looks closer and closer to being identically 0. We can express this as follows: given a scaling factor

√
k,

we can get a new set of coordinates φ1/√k =
1/√k
φ

. Then the bundle map µ1/√k(z) corresponding to these
new zoomed in coordinates satisfies bounds:

∣µ1/√k(z)∣ ≤
C ∣z∣√
k

∣∇µ1/√k(z)∣ ≤
C√
k

∎

So, we can see where at least where some of the dependence of these bounds on
√
k are. But why are we

using
√
k here?

For this, we need to look at the relation between curvature and complex geometry. Equip B with the
standard Kähler form

ω0 =
i

2
∑
α

dzαdz̄α

Then ω0 = idA where

A = 1

4
∑
α

zαdz̄α − z̄αdzα)

so that −iω0 is the curvature form of the trivial complex line bundle over Cn with connection matrix A.
This defines a ∂̄ operator

∂̄A(f) = ∂̄f +A0,1f.

Now this complex vector bundle has a holomorphic section which decays rapidly to infinity in Cn,

σ(z) = e−∣z∣
2/4

With respect to this connection:

∂̄Aσ(z) =
1

4
(∑ zαdz̄α − zαdz̄α)e−∣z∣

2/4) = 0

and
∂A(σ(z) =

1

2
(∑ z̄αdzα) e−∣z∣

2/4

So, the positive curvature tensor ω0 in these coordinates gives us a holomorphic section with exponential
decay. Let’s call this trivial bundle ξ → B. If instead, we had the curvature tensor kω0, we would have
a section of ξk → B which would have norm e−k∣z∣

2/4 = e∣−
√
kz∣2/4. Aha! It appears that taking the kth

tensor power of a bundle with positive curvature at least locally provides the same effect as applying a
dilation of 1√

k
to our coordinates. This gives us the basis of our second local estimate:

Sketch of Proof. We have a model for constructing these sections in standard coordinates. We just
need to check how much are the derivates of these sections changed when we go from the standard
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complex structure to an almost complex structure instead. Let ∂̄J,k denote the covariant derivative on
L⊗k → (M,ω) coming from ω and J . One can check that

∂̄J,k(f) = (∂̄f +A0,1f) + µ 1
√

k

(∂f,A1,0f)

so that we have the following inequalities:

∣∂̄J,kf(z)∣ ≤
C ∣z∣2e−∣z∣

2/4
√
k

∣∇(∂̄J,kf(z)∣ ≤
C(∣z∣ + ∣z∣3)e−∣z∣

2

/4√
k

We would like to use the section σ that we constructed above and the new estimates to give the desired
sections. However, the section σ is defined on all of Cn. Let βk be a bump function supported on a ball of
radius k1/6 so that

∇βk = O(k
−1
6 )

Then one can check that βkσ satisfies all of the same inequalities as σ does, but is now supported on a ball
of radius k1/2.
Define the section σk,x to be the pullback of the section βkσ. ∎

So now we have many little asymptotically holomorphic sections that exist around any given point.
However, these sections are not uniformly transverse, because they are 0 almost everywhere. So , they are
not yet analogous to the non-zero holomorphic sections that we are trying to imitate. Our goal now is to
take all of these little sections, and tie them together somehow.

3 Building a Global Section
Our first attempt to build a global section is to simply add together the small local sections that we have.
around points. We need to choose which points we are going to center our sections around for this
construction. This choice needs to be reasonable and relies on the following lemma:

Lemma 3.1 There is a constant C such that for every k we can cover V by M sets which are gk-unit balls with
centers pi such that for every point q ∈ V , we have

∑
i

dk(pi, q)rekek(pi, q) ≤ C

where ek(p, q) = e−dk(p,q)
2/5 if dp,q ≤ k1/4 and 0 otherwise and r = 0,1,2,3.

Given a selection of points pi, and a set of coefficients w̄ = (w1, . . . ,wM), define the section

s = sk,w̄ −
M

∑
i=1

wiσk,pi .

By the local bounds on the sections sk,pi and the choice of point placements, we have the following global
bound on the section sk.,w̄.

Lemma 3.2 Let ∣wi∣ ≤ 1 be a choice of coefficients. Then the section sw̄,k satisfies the following bounds :

∣s∣ ≤ C

∣∂̄Ls∣ ≤ C√
k

∣∇∂̄Ls∣ ≤
C√
k

This gives us a section which is asymptotically holomorphic. However, we know nothing about the
transversality of the section at the zero set of that section.

3.1 Transversality
The result that we would like to prove is
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3.1 Transversality 5

Proposition 3.3 There exists an ε > 0 such that for all k >> 0 we can find w̄ such that sw̄,k satisfies the transversality
condition

∣∂sw̄,k∥ > ε
whenever sw,s = 0.

The proof of this relies on some estimates on the sizes of perturbations of sections.

Theorem 3.4
Main Technical Bound

Let B+ be the ball of radius 3
2

in Cn, and let f ∶ B+ → Cm be a function. Assume that f satisfies the
bounds

∣f ∣ ≤ 1 ∣∂̄f ∣ ≤ η
Then there exists a w ∈ Cm with ∣w∣ ≤ δ < 1/4 such that f −w is η-transverse to 0 over the interior
ball B of radius 1. The quantity η is dependent on δ as

η = δQp(δ)

and Qp(δ) = log−1(δ)−p, where p depends only on m and n.

With this proposition we can start the proof of the transversality result as follows. Given the asymptoti-
cally holomorphic sections sw̄,k as constructed above, consider the complex valued functions

fk,pi ∶= sk/sk,pi
defined in a small neighborhood of the pi. By the lemma, there exists small constants wk such that fk −wk
are uniformly transverse to 0. Multiplying again by sk,pi , we have that

sk −wksk,pi
is uniformly transverse to 0 near x. This means that the transversality of sw̄,k at a point pi can be
determined by adjusting the coefficient wi. We might try to do this at each point pi. If we just greedily do
this, our estimates will fail due to the number of perturbations that we make growing with the number of
points pi used to construct the section sw̄,k. In general, the number of points M grows as k2n. We can
remove this difficulty by refining our lemma on choosing centers of points:

Proposition 3.5 Let D > 0. There exists a number N(D) = O(D2n) independent of k for which the centers {pi}i∈I
can be chosen to satisfy the following partitioning condition. There is a partition I = I1 ∪⋯IN(D) so
that points in Ik are at least D from each other.

Our strategy for perturbations will be to now perturb all of the points in Ik simultaneously. We will
construct a series of coefficients w̄α such that over the balls centered on I0∪, . . . Iα, the section sw̄α,k
is at least ηα transverse for some constant ηα not dependent on k. Suppose the section sw̄α−1,k is δα−1

transverse on the balls centered on I0∪, . . . Iα−1. As the sections sk have a nice exponential drop off, we
know the following:

Lemma 3.6 Let w̄α−1 and w̄α differ only in coefficients Iα, and there only by an amount δ. Then the C1 norm of
sw̄α−1,k − sw̄α−1,k restricted to any ball is O(δ).

Since η-transversality is C1 norm stable,

Corollary 3.7 Let w̄α−1 and w̄α differ only in coefficients Iα, and there only by an amount δ. Suppose that sw̄α−1,k
is ηα transverse to 0 on the balls centered over I0∪, . . . Iα. Then sw̄α,k is ηα −O(δ) transverse to the
zero section on the same balls.

So, by letting δ be η/(2C), we can safely perturb our sections and preserve η transversality. We now use
the distance between the centers of each Iα to show that we can simultaneously perturb these sections.
The required condition that simultaneous perturbations don’t effect each other very much is

exp(−D2/5) ≤ 1

2
Qp(δα)

In this case, the new section will be ηα = 1
2
Qp(δα)α transverse to the zero section on the new balls. In

order to keep the old estimates intact, we need δQp(δ) ≤ ηα−1. This gives us the required relation

ηα = Qp(ηα−1)ηα−1

JHICKS V.2015/02/15.10:35:19



6

This inductive relation eventually expands out to the bound

Qp(ηα−1) ≥
C

(α logα)p

for some constant C. Letting α take its maximal value

Qp(ηα−1) ≥
C

(N logN)p

≥ C

D2np+1

For large enough D, we have that

≥ e−D
2/5

which is the required estimate so that the balls do not effect each other a lot. This leaves the proof of the
existence of global sections down to the proof of the main technical bound.

4 Proof of the Main Technical Bound
For this section we follow Auroux’s Paper. Restated:

Theorem 4.1
Main Technical Bound

Let B+ be the ball of radius 3
2

in Cn, and let f ∶ B+ → C be a function. Assume that f satisfies the
bounds

∣f ∣ ≤ 1 ∣∂̄f ∣ ≤ η
Then there exists a w ∈ C with ∣w∣ ≤ δ < 1/4 such that f −w is η-transverse to 0 over the interior ball
B of radius 1. The quantity η is dependent on δ as

η = δQp(δ)

and Qp(δ) = log−1(δ)−p, where p depends only on m and n.

While we use the case where m = 1, this bound turns out to be very difficult to prove. Auroux observes
that in this particular case we can work instead with the case m > n by perturbing sections in the jet bundle
of L⊗k instead.

Theorem 4.2
Weakened Techinical
Bound

Let B+ be the ball of radius 3
2

and let f ∶ B+ → C be a function. Assume that f satisfies the bounds

∣f ∣ ≤ 1 ∣∂̄f ∣ ≤ η

Then there exists a w ∈∈ Cm with ∣w∣ ≤ δ < 1/4 such that f −w0 −∑wizi is η transverse to 0 over
the interior ball B of radius 1.

This turns out to be sufficient for us– the asymptotic drop off of the functions ensures that it does not
matter if we work with perturbations that are constants, or perturbations that are linear. This technical
bound depends on the following lemma:

Lemma 4.3 Let B+ be the ball of radius 3
2

in Cn, and let f ∶ B+ → Cm be a function with m > n. Assume

∣f ∣ ≤ 1 ∣∂̄f ∣ ≤ η

Then there exists a w ∈ Cm with ∣w∣ ≤ δ < 1/4 such that ∣f −w∣ ≥ η over the interior ball.

This is even better than η-transverse– this is η avoidance.

Proof. Outline of the proof:
1. Without loss of generality , assume that m = n + 1. Now we approximate f by a polynomial. The

degree of this polynomial is d = O(log(η−1) and the polynomial is chosen so that ∣f − g∣ ≤ cη.
2. If we can find w ∈ Cn+1 with ∣w∣ ≤ δ, and ∣g − w∣ ≥ (c + 1)η over the ball B, then we get that

∣f −w∣ ≥ η everywhere. How do we find such a w for this polynomial?
3. Notice g is contained in an algebraic hypersurface of degree at most (n + 1)dn.
4. Bound the volume of intersection of balls with H .
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5. Use this to create a neighborhood of the hypersurface H , and therefore a neighborhood of C. Use
the bound on the volume of the hypersurface to produce a point of sufficient distance from H .

∎

Proposition 4.4 We can approximate f by a polynomial of degree d log(η−1).

Proof. Let f = (f0, . . . fm). For each of the fi, first approximate fi by a holomorphic f̃i on the ball of
radius 1.

Claim 4.5 There exists constant K such that any smooth f ∶ B+ → C there is a holomorphic function
f̃ defined on the interior B so that

∥f − f̃∥1 ≤K(∣∂̄f∥0 + ∥∇∂̄f∥0).

You can solve this by finding the solution to the ∂̄ problem

∥T (∂̄f)∥L2(r′∆+) ≤ C∥∂̄f∥L2(∆+).

Then f̃ = f − T (p) is holomorphic. Let h = f̃ − f . The L2 norm of h and C1 norm of ∂̄h = ∂̄f are B+

are bounded by multiples of ∥∂̄f∥1. So is the C1 norm of H .

Claim 4.6 Let f ∶ B+ → C be a holomorphic function. Then for any ε < 1/2, there is a complex
polynomial g of degree less that C log ε so that ∣f(z) − g(z)∣, ∣∂f − ∂g∣ ≤ ε on B.

To prove this statement we use a truncation of a taylor series expansion of f . Calculate the coefficients in
the taylor series by using the Cauchy integral formula. Then if g is truncated at degree ns, a bound on the
Cauchy integral formula show sht at

∣f(z) − g(z) ≤ n2−s

∣∂f − ∂g∣ ≤
√

(s + n)2−s

which is enough to get our bound on the degree by

d ≤ log(−ε)

∎

Proposition 4.7 A polynomial g ∶ Cn → Cm has image contained in an algebraic hypersurface degree at most (n+1)dn.

Proof. If not, every nonzero polynomial of degree at most D in n + 1 variables is non-identically zero of
degree at most dD in n variables.

• The space of polynomials of degree at most D in n + 1 variables is (D+n+1
n+1

).
• The space of polynomials of degree at most dD in n variables is (dD+n

n
).

If D = (n + 1)dn, then we have a lack of injectivity between these two sets of polynomials. ∎

Proposition 4.8 Let H ⊂ Cn+1 be a complex algebraic hypersurface of degree D. Then given any r > 0, and any
x ∈ Cn+1, the 2n dimensional volume of H ∩B(x, r) is at most DV0r

2n, where V0 is the volume of
the unit ball of dimension 2n. Moreover, if x ∈H , then one also has vol2nH(∩B(c, r)) ≥ V0r

2n.

Let B̂ be a ball of radius δ which satisfies η = δ log(δ−1)−p. Such a ball intersects H with volume at most
(n + 1)V0d

nδ2n. Cover B̂ with balls of radius η so each point in B̂ is only k redundantly covered. By
the bound, one can check that the number of such balls required to cover H ∩ B̂ is N = Cdnδ2nη−2n.By
taking δ to be larger than C′′dn/2η for some fixed constant C′′ dependent only on n, we will be able to
find a point in B̂ not contained in the cover of H , where the cover of H is of radius (c + 1)η. Such a point
has the property that ∣f −w∣ ≥ η every point in B.

5 Applications
Three additional applications are listed in Donaldson’s paper. The first one is to provide some structure to
sections found in the integrable case.
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Proposition 5.1 Let (V,ω) be a Kähler manifold and L→ V a hermitian holomorphic line bundle with curvature −iω.
Then there is a constant η > 0 so that Lk has a holomorphic section with ∣s∣ ≤ 1 and ∣∂s∣ ≥ η

√
k

everywhere.

This means that we can find transverse sections of line bundles in the case of the Kodaira embedding
theorem. This gives us interesting bounds on divisors representing certain line bundles.

The second application is an adaptation of the Lefschetz Hyperplane theorem to symplectic mani-
folds.

Proposition 5.2 Let Wk be the zero set of asymptotically holomorphic sections arising from Donaldson’s divisor
theorem. Then when k is sufficiently large, the inclusion Wk → V induces an isomorphism on
homotopy groups πp for p ≤ n − 2, and a surjection on πn−1.

The third application of Donaldson’s theorem is a convergence result:

Proposition 5.3 Consider Wk as a current of degree 2. Then Wk → kω/2π as a current.
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