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Abstract

This paper reviews some basic definitions and notations for filtered (curved) A∞ algebras.
Much of the theory is presented using trees to diagrammatically express curved A∞ relations,
with particular attention spent to bounding cochains. In addition to providing a proof of the
curved homological perturbation lemma, this exposition gives explicit chain models for mapping
cones, fiber products, mapping cylinders, and homotopy squares. These tools are developed for
the purpose of extending the statements (where possible) of [BC14] to the curved setting.
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1 A refresher on curved A∞ algebras

1.1 An A∞ refresher

These notes are partly based on the already excellent exposition on non-curved A∞ algebras
[Kel99], and [Zha13] which explores deformation theory and curved A∞ algebras in more detail,
as well as [Fuk+00]. We will review curved A∞ algebras, their morphisms and deformations. For
reasons related to the convergence of the constructions of deformations (which will frequently
involve infinite sums) we will work with the theory of filtered A∞ algebras.
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Definition 1.1.1 ([Fuk+00]). Let R be a commutative ring with unit. The universal Novikov
ring over R is the set of formal sums

Λ≥0 :=

{ ∞∑
i=0

aiT
λi | λi ∈ R≥0, lim

i→∞
λi =∞.

}
Let k be a field. The Novikov Field is the set of formal sums

Λ :=

{ ∞∑
i=0

aiT
λi |λ ∈ R, lim

i→∞
λi =∞

}
An energy filtration on a graded Λ-module A• is a filtration FλiAk so that

• Each Ak is complete with respect to the filtration, and has a basis with valuation zero over
Λ.

• Multiplication by Tλ increases the filtration by λ.

Definition 1.1.2. Let A• be a graded Λ-module. A filtered A∞ structure (A•,mk) is a graded
Λ module A• with Λ-linear cohomologically graded higher products for each k ≥ 0

mk : (A•)⊗k → (A•+2−k)

satisfying the following properties:

• Energy Filtration: The product respects the energy filtration in the sense that :

mk(Fλ1A•, · · · , FλkA•) ⊂ F
∑k
i=1 λiA•

• Non-Zero Energy Curvature: The obstructing curvature term has positive energy,

m0 ∈ Fλ>0(A•)

• Quadratic A∞ relations For each k ≥ 0,∑
j1+i+j2=k

(−1)♣mj1+j2+1(id⊗j1 ⊗mi ⊗ id⊗j2) = 0.

The value of ♣ is determined on an input element a1 ⊗ · · · ⊗ ak by

♣ = |ak−j1 |+ · · ·+ |ak| − i.
We say that A• is unital if there exists an element eA such that

mk1+1+k2(id⊗k1 ⊗e⊗ id⊗k2) =

{
id k1 + k2 = 1
0 k1 + k2 6= 1

.

For the purposes of exposition, we will ignore the sign ♣ from here on own.
If m0 = 0, then (A•,m1) is a chain complex, and we say that A• is uncurved or tautologically

unobstructed, otherwise, we say that A• is curved. We from now on suppress the cohomological
index, and when the product structure is clear, we will simply notate an A∞ algebra by A.

Definition 1.1.3. Let A be a filtered A∞ algebra. An ideal of A is a subspace I ⊂ A so that
for every i ∈ I, and a1, . . . ak−1 ∈ A, we have that

mk(a1 ⊗ · · · ⊗ aj ⊗ i⊗ aj+1 ⊗ · · · ak−1) ∈ I.
The quotient of a A∞ algebra by an ideal is well defined. The filtration gives us a natural

ideal of the A∞ algebra.
Given (A,mk) a filtered A∞ algebra, define the positive filtration ideal A>0 := {a ∈

A | val(a) > 0}. We then may recover a uncurved A∞ algebra by taking the quotient,

A=0 := A/A>0.

This is always an uncurved as the m0 term is required to always have positive energy.
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Figure 1: An example of a planar rooted tree with some semi-infinite leaves

1.2 From Trees to the Relations

The A∞ relations are described by large compositions of multilinear maps, and it is frequently
convenient to notate these large compositions of multilinear maps using the languages of trees.

Definition 1.2.1. A planer rooted tree with some semi-infinite leaves is a tree T with the
following additional data:

• An ordering of the leaves of T arising from a planar embedding of T .

• A choice of leaf e0 called the root of T .

• A choice Ec of non-root leaves called the semi-infinite leaves or external leaves.

When we say that v is a vertex of a planar rooted tree with semi-infinite leaves, we will always
mean that v is a vertex of degree greater than 1, or a vertex of degree 1 which does not belong
to a semi-infinite leaf or root edge.
If T is planar rooted tree with some semi-infinite leaves with at least 1 vertex, we denote by v0

the vertex which is connected to the root edge.

One should imagine that a planar rooted tree is a rooted tree with an planar embedding into
the disk with some subset of the leaf vertices on the boundary of the disk. From now on we will
always use the word “tree” to describe a planar rooted tree with some semi-infinite edges. We
define the valence of a tree T to be the number of external leaves, and write

ν(T ) := |Ec|.

The external leaf set Ec inherits an ordering {1, 2, . . . , ν(T )} from the ordering of the leaves.
Since T is a rooted tree, to each vertex we have an ordered upward edge set, E↑v , and a downward
edge e↓v. Similarly, to each edge we have an upward vertex v↑e and downward vertex v↓e .

Definition 1.2.2. A labelling L of a tree T is an assignment to

• Each edge a vector space Ae.

• Each vertex a morphism

fv :
⊗
e∈E↑v

Ae → Ae0 .

To each labelled tree (T, L), we obtain a morphism

f (T,L) :

(⊗
e∈Ec

Ae

)
→ Ae0 .

Notation 1.2.3. In the event where there is a fixed algebra A so that for all e ∈ Ec ∪ e0, the
algebras agree Ae = A, we will use the letter m to denote that this should be interpreted as a
product relation on A,

m(T,L) : A⊗val(T ) → A.
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Figure 2: The k = 2 quadratic A∞ relation expressed by a sum over trees.

Remark 1.2.4. To specify the data of a labeled tree (T, L), it suffices to specify labels of com-
patible morphisms on the internal vertices, as one can recover the edge data from the domain
and codomains of these morphisms.

The quadratic A∞ relations may be restated as the following sum over trees, which is also
displayed in fig. 2 ∑

(T,L) | ν(T )=k

|V (T )|=2,L(v)=mdeg(v)−1

m(T,L) = 0.

1.3 Morphisms of filtered A∞-algebras

There is a well-defined notion of morphism between filtered A∞ algebras.

Definition 1.3.1. Let (A,mk
A) and (B,mk

B) be a pair of filtered- A∞ algebras. A weakly-filtered
A∞ homomorphism from A to B is a sequence of graded maps

fk : A⊗k → B

satisfying the following conditions:

• Weakly Filtered The maps nearly preserve energy

fk(Fλ1A, · · · , FλkA) ⊂ F−c·k+
∑k
i=1 λiB

for some fixed constant c called the energy loss of f with c < |m0
A|.

• Quadratic A∞ relations The fk,mk
A and mk

B mutually satisfy the quadratic curved A∞
homomorphism relations∑

(j1+i+j2=k)

±f j1+j2+1(id⊗j1 ⊗mi
A ⊗ id⊗j2) =

∑
i1+···+ij=k

±mj
B(f i1 ⊗ · · · ⊗ f ij )

Suppose that A is an A∞ algebra with unit. We say that fk is a unital A∞ homomorphism
if

f1(eA) =eB

fk(id⊗j1 ⊗eA ⊗ id⊗j2) =0.
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A A A A A A⊗ ⊗ ⊗⊗ ⊗

f4f0f2

g3

Figure 3: A typical term which appears in the composition (g ◦ f)6.

The quadratic A∞ homomorphism relation may also be written as∑
(T,L) | ν(T )=k,|V c|=2

Vertex above root labeled fi

Other vertex labeled mjA

f (T,L) =
∑

(T,L) | ν(T )=k,

Vertex above root labeled miB
every other vertex labeled fj

f (T,L).

This can be re-expressed as: ∑
(T,L) | ν(T )=A⊗k

At most one vertex labeled miA or miB
Every other vertex labeled fj

f (T,L) = 0.

Our tree notation becomes more useful for constructing new morphisms out of old.

Claim 1.3.2. Let f⊗k : A⊗k → B and g⊗kB⊗k → C be two filtered A∞ homomorphisms. Then

(g ◦ f)k :=
∑

(T,L) | ν(T )=k,
Vertex above root labeled g
every other vertex labeled fj

(g ◦ f)(T,L).

is an A∞ homomorphism.

See fig. 3 for a typical term which appears in the composition.

1.4 Deformations of A∞ algebras

The presence of higher product structures gives us additional wiggle room to deform the product
structures on filtered A∞ algebra structure. We will be mainly interested when we can deform
a given curved A∞ algebra into an uncurved one. This is useful as the theory of uncurved A∞
algebras is easier to work with than the theory of curved A∞ algebras. In particular, a large
portion of the theory can be reduced to algebra on the level of homology.

Notation 1.4.1. As a shorthand, we write

(id +a)(
n+k
n )

a =
∑

j0+···+jk=n

(a⊗j0 ⊗ id⊗a⊗j1 ⊗ id⊗ · · · ⊗ a⊗jk−1 ⊗ id⊗a⊗jk).

for the sum over all monomials containing n+ k terms, n of which are a.
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A A A⊗ ⊗

b bb

m3

Figure 4: A typical tree contributing to m3
b .

Definition 1.4.2. Let a ∈ A be an element of positive Novikov valuation. The a-deformed
product structure on A is the product

mk
a :=

∑
n

∑
j0+···jk=n

mk+n
(

(id +a)(
n+k
n )

a

)
.

We call this a graded deformation if the element a has homological degree 1.

In the language of trees the deformed product is

mk
a =

∑
(T,L) | ν(T )=k

T has unique non-leaf vertex labeled mn

Every internal leaf is labelled a

m(T,L).

See fig. 4 for one of the terms of this sum. Note that this will be an infinite sum, as the number
of trees with a bounded number of external leaves need not be bounded in the number of
internal leaves. However, each internal leaf contributes some valuation to the composition, so at
a bounded valuation the number of trees contributing to mk

a is finite. The ensures convergences.

Claim 1.4.3. (A,mk
a) is again a filtered curved A∞ algebra.

Example 1.4.4. The simplest of a deformation is in a DGA where mi = 0 for i 6= {1, 2}. In
this case, the deformed product becomes

d1
a(x) = d(x) + 2 (a ∧ x)

which is the standard twisting of the differential on a differential graded algebra.

We are interested in the cases where (A,ma) gives us a well defined homology theory even
though A itself may be curved.

Definition 1.4.5. We say that a ∈ A is a bounding cochain or Maurer-Cartan solution if

m0
a = 0.

Suppose that A has a unit. We say that a ∈ A is a weak bounding cochain or weak Maurer-
Cartan solution if

m0
a = W · eA,

where eA is a unit, and W is some constant called the obstruction superpotential.
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The presence of either a bounding cochain or weak bounding cochain is enough to give us a
well defined homology theory. In the weak bounding case, we have that

m1
a ◦m1

a = m2(id⊗(W · e))−m2((W · e)⊗ id) = 0.

The Maurer-Cartan equation is sometimes written as

m0
a =

∑
n

mn(a) = ea.

Definition 1.4.6. Let A be an A∞ algebra. The space of Maurer-Cartan elements is defined
as

MC(A) := {a ∈ A | m0
a = 0}.

We say that A is unobstructed if this space is non-empty.
The space of weak Maurer-Cartan elements is the space

MCW (A) := {a ∈ A | m0
a = W · e}

and we say that A is weakly unobstructed if this space is non-empty.

The Maurer-Cartan equation is non-linear. In the event that the Maurer-Cartan space
contains a linear subspace, then 0 is a Maurer-Cartan element, and the algebra A is uncurved.

Lemma 1.4.7. Let f : A → B be a weakly filtered A∞ morphism (preserving units) of energy
loss c. Then there exists a pushforward map between the (weak) bounding cochains on A of
valuation greater than c, and the weak bounding cochains of B given by

f∗ :MCW (A)→MCW (B)

ba 7→
∑
k

fk(b⊗ka )

Proof. In order for
∑
k f

k(b⊗ka ) to converge, it suffices for the energy of ba to be greater than
the energy loss of f , which was assumed. We want to show that bB =

∑
k f

k(b⊗ka ) satisfies the
(weak) Maurer-Cartan equation

∑
k

mk
B(b⊗kB ) =

∑
k

mk
B

∑
j1

f j1(b⊗j1A )

⊗ · · · ⊗
∑

jk

f jk(b⊗jkA )


=
∑
k

∑
j1,...,jk

mk
B(f j1(b⊗j1A )⊗ · · · ⊗ f jk(b⊗jkA )

=
∑
l

∑
j1+j2+...,jk=l

mk
B((f j1 ⊗ · · · ⊗ f jk) ◦ (b⊗lA )

=
∑
l

∑
i1+j+i2=l

f i1+i2+1(id⊗i1 ⊗mj
A ⊗ id⊗i2) ◦ (b⊗lA )

=
∑
i1,i2

f i1+i2+1

id⊗i1 ⊗

∑
j

mj
A(b⊗jA )

 , id⊗i2

 ◦ (bA)⊗(i1+i2)

=
∑
i1,i2

f i1+i2+1
(
b⊗i1A ⊗W · eA, b⊗i2A

)
=W · eB +W ·

∑
i1+i2>0

f i1+i2+1,
(
b⊗i1A ⊗ eA ⊗ b⊗Ai2

)
In the case where bA is a bounding cochain, W = 0 and we are finished. In the case where
W 6= 0, the fact f was required to be unital means that the right terms vanish.
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Surprisingly, deformations commute with each other in the following sense:

Claim 1.4.8. Let a1, a2 be elements of A. Then (A•, (ma1)a2) = (A,ma1+a2).

Proof. A calculation shows that

(mk
a1)a2 =

∑
n

mk+n
a1 (id⊕a2)

(n+k
n )

a2

=
∑
m

∑
n

mk+m+n(id⊕a1)
(n+k+m

m )
a1 ◦ (id⊕a2)

(n+k
n )

a2

=
∑
m+n

mk+m+n(id +a1 + a2)
(n+m+k
m+n )

a1+a2 = mk
a1+a2

Remark 1.4.9. Because the space of Maurer-Cartan elements is cut out by a non-linear equa-
tion it is unlikely that if a0 and a1 are bounding cochains that a0 + a1 is similarly a bounding
cochain.

Claim 1.4.10. Let A and B be two filtered A∞ algebras, and let f : A → B be a filtered A∞
algebra morphism. Then there exists an A∞ homomorphism

f[ : (A,mA)→ (B, (mB)f∗(0))

where f[ is defined 1 by

fk[ =

{
fk for k > 0
0 if k = 0

Claim 1.4.11. Let A and B be two A∞ algebras, and let f : A → B be a filtered A∞ algebra
morphism. Let a ∈ A be a deforming element. Then there the map

fa : (A, (mk
A)a)→ (B,mk

B).

Proof. Define fka to be the map

fka :=
∑
n

fk+n(id +a)(
n+k
n )

a .

We show that this satisfies the quadratic A∞ relations by explicit computation.∑
j1+i+j2=k

±f j1+j2+1
a (id⊗j1 ⊗mi

A,a ⊗ id⊗j2)

=
∑

j1+i+j2=k

∑
n1,m,n2

±f j1+n1+1+j2+n2

((
(id +a)(

j1+n1
n1

)
a

)
⊗mi+m

(
(id +a)(

i+m
m )

a

)
⊗ (id +a)(

j2+n2
n2

)
a

)
=
∑
n

∑
n1+m+n2=n

∑
j1+i+j2=k

(
fk+n(id⊗(j1+n1)⊗mi+m ⊗ id⊗(j2+n2))

)
◦ (id +a)(

k+n
n )

a

=
∑
n

∑
i1+···+ih=n+k

mh
B(f i1 ⊗ · · · ⊗ f ih) ◦ (id +a)(

k+n
n )

a

=
∑

l1+···+lh=k

mj
B(f l1a ⊗ · · · ⊗ f lja )

1The the notation is read “f-flat”’, as this is the flat version of the curved A∞ homomorphism f .
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One may use the previous two claims to construct the pushforward map on bounding
cochains, as

f∗(b) = (fb)∗(0)

This, along with the statement on the pushforward of a bounding cochain, proves the fol-
lowing characterization of unobstructed A∞ algebras.

Corollary 1.4.12. Let A,B be two filtered A∞ algebra. A zero-morphism 0 : A → B with
f i = 0 for i ≥ 1 exists if and only if B is unobstructed.

2 Curved Homological Perturbation Lemma

2.1 A curved Homological Perturbation Lemma

In this section we prove a curved homological perturbation lemma.

Theorem 2.1.1 (Curved Homological Perturbation Lemma). Let B be a filtered A∞ algebra,
and (A=0, µ

1
A=0

) be a chain complex. Suppose there exist chain maps π : B=0 → A=0 and
i : A=0 → B=0 so that

• There exists a weakly filtered chain homotopy h : B → B so that

h ◦ µ1
B + µ1

B = id−i0 ◦ π

Then we can extend the chain structure on A=0 to a filtered A∞ structure (A,mk
A), where the

Λ-graded portion of m1
A matches µ1

A=0
. For this choice of filtered A∞ structure, the map π is a

homotopy equivalence of filtered A∞ algebras with explicit weakly filtered A∞ homotopy inverse

ik : A⊗k → B.

If A already had an A∞ structure so that π is a filtered A∞ map, then the extended A∞ structure
on A can be chosen to match the original structure.

In the setting of non-curved A∞ algebras, this statement exactly matches the usual statement
of a curved A∞ algebra. If B has no curvature, then the constructed A∞ structure m1

A matches
dA.

The remainder of this section is devoted to the proof of theorem 2.1.1.
We want to describe a sequence of maps ik : A⊗k → B satisfying the A∞ relations. The

maps can be constructed inductively (see [Sei08]) but we will describe them using trees. To each
tree with labellings we will associate a morphism from iT : A⊗ν(T ) → B by taking a composition
of morphisms specified by the adjacency data of the tree.

We now specify labellings (T, Lmhpl) which will determine the product structure on A.

• We label each external leaf and root with the vector space A. We label each internal edge
with the vector space B.

• If v is a vertex of T we label it with the morphism h ◦mdeg(v)−1.

• If v is a vertex of T incident to an external leaf, we pre-compose with the appropriate
tensor product of inclusions i : A→ B and id : B → B so that the domain of the label of
v matches its upward edges.

• We post-compose at the vertex v0 with the morphism π : B → A.

We define the product structure on A by the sum over all stable trees of valency k as well

mk
A :=

∑
T | ν(T )=k
deg(v)6=2

m(T,Lmhpl)
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A ⊗ A ⊗ A ⊗ A

h ◦m2
B h ◦m3

B

h ◦m2
B

m2
B

h ◦m0
B

h ◦m0
B

B

Figure 5: A typical example of a tree with a homological perturbation lemma labelling contributing
to i.

To each tree T , we associate the homological perturbation lemma labelling (T, Lihpl), which is
drawn in fig. 5.

• We label each external leaf with A. We label each internal edge and root with the label
B.

• If v is an internal vertex of T , we label it with the morphism h ◦mdeg(v)−1.

• If v is a vertex of T which is incident to an external leaf, we pre-compose with the appro-
priate tensor product of inclusions i : A → B and id : B → B so that the domain of the
label of v matches its upward edges.

We define maps ik to be the sum of all such maps over stable trees of valency k,

ik :=
∑

T | ν(T )=k
deg(v)6=2

i(T,L
i
hpl)

Note that we have the following relations between the product structure and the constructed
maps:

π ◦ i(T,Lihpl) = m(T,Lmhpl).

Both ik and mk
A are defined by infinite sums. This sum converges over Λ, as the valuation of

a morphism can be bounded below by the number of internal leaves when h is weakly filtered.
At each valuation λ, there are most λ

ν(h◦m0) internal leaves in each i(T,L) contributing to ik

below that valuation. Because the number of stable trees with a fixed number of leaves is finite,

we have the sum over all i(T,L
i
hpl) of bounded valuation and fixed valency is bounded. This is

sufficient to ensure convergence in the Novikov field.
We prove that the morphisms ik and mk mutually satisfy the quadratic A∞ homomorphism

relations. We omit the proof that the mk
A satisfy the A∞ relations as the proof is similar, but

simpler.

Definition 2.1.2. We say that T is a 1-unstable tree if there it has a single vertex v of degree
2. In this case, we call this vertex v the unstable vertex of T . Let T be a 1-unstable tree. The
instability distance of T is the distance from the unstable vertex to v0.
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If T is an unstable tree, we show that the quadratic A∞ relations allow us to reexpress each

i(T,L
i
hpl) as a sum of unstable trees with greater instability distance. This process will eventually

give us the full A∞ relations for homomorphisms. We consider the following special labellings
of trees.

• i ◦ π broken Trees. At the specified vertex v, we use the label i ◦ π ◦mdeg(v)−1
B instead of

the standard label. We call the corresponding labelling Lπ◦iv .

The i◦π broken trees can be also expressed in the following way. Let T ↑v be the tree which
is obtained by taking all edges upwards of v and the edge e↓v. v is the interior root vertex
of the tree T ↑v . Let T ↓v be the tree which consists of all edge not upward of v, so that v is an
external leaf of this new tree. Then this i ◦ π broken tree is equivalent to the composition

i(T,L
i◦π
v ) = i(T

↓
v ,L

i
hpl) ◦ id⊗k

1 ⊗m(T↑v ,L
m
hpl) ⊗ id⊗k1 .

where k1 is the number of leaves “left” of the vertex v, and k2 is the number of leaves right
of v, so that val(T ) = k1 + val(T ↑v ) + k2.

• id broken trees. At a specified vertex v, we choose the label id ◦mdeg(v)−1
B . We call the

corresponding label Lid
v .

The following observations become the framework for proving the homological perturbation
lemma

1. The sum over all id-broken stable trees at v0 of fixed valence nearly gives the right hand
side of the A∞ relations.∑

T | val(T )=k

i(T,L
id
v0

) =
∑

i1+···+ij=k,k>1

±mj
B(ii1 ⊗ · · · ⊗ iij ) (1)

2. The sum of all i ◦π broken trees of fixed valence gives a large portion of the A∞ relations,∑
v∈T | val(T )=k

i(T,L
i◦π
v ) =

∑
(j1+i+j2=k)

i>1

±ij1+j2+1(id⊗j1 ⊗mi
A ⊗ id⊗j2) (2)

Let T be a tree. The subdivision tree T is tree T ÷ e obtained by replacing the edge e with two
edges, and a new vertex ve. The subdivision of a tree is never stable, as the new vertex ve has
degree 2.

Claim 2.1.3 (Homotopy Identity). Let T be a tree. Let e be an interior edge with upward vertex
v.

i(T÷e,L
id
ev ) + i

(
T÷e,Lid

v
↑
e

)
+ i

(
T,Li◦π

v
↑
e

)
+ i

(
T,Lid

v
↑
e

)
= 0

Given a stable tree T and a vertex v ∈ T , the expansions of T at v are the planar trees
T ′ with two vertices v↓, v↑ ⊂ V (T ′) so that the contraction T ′/{v↓v↑} is T , and under this
contraction both v↓ and v↑ are identified with v.2 If T ′ is an expansion of T at a vertex v, we
label it (T ′, Lid

v↑).

Claim 2.1.4 (Associativity Identity). Let T be a tree. Let v ∈ T be any vertex. Then∑
(T ′,Lid

v↑ )

T ′ an expansion of T at v

i

(
T ′,Lid

v↑

)
= 0.

2The planarity condition is important here. For example, a trivalent vertex has 6 expansions where 3 of the
expansions are isomorphic as trees but not as planar trees.
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i ◦ π

Broken of type i ◦ π

Type id at root mk(fT1 , fT2 , . . . , fTj )

id

id

Tree of type id

Broken of type id at internal edge

id

Tree of type id

Start with unstable at root

Stable expansions (Broken of type id)

Trees which are unstable at an external leaf

Ho
mo

top
yR

ela
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n

A
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cia
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ity
R
elation

Re
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at

Unstable trees

Trees of Type m1 ◦ h

Tree of type h ◦m1

Figure 6: Repeated applications of homotopy and associative relations.

Lemma 2.1.5. Let T be a stable tree.

i
(T÷e0,Lid

ve0
)

=
∑

(T ′,Lid
v↑ )

T ′ a stable expansion of T

i

(
T ′,Lid

v↑

)
+

∑
v∈V (T )

i(T,L
id
v )

︸ ︷︷ ︸
id broken trees

+
∑

v∈V (T )

i(T,L
i◦π
v )

︸ ︷︷ ︸
i ◦ π broken trees

+
∑
e∈Ec

i(T÷e,L
id
ve

).

Proof. Let T be a stable tree, and e a vertex in T . The tree T÷e is a 1-unstable tree. We show

that if e is not a external leaf, i(T÷e,L
id
ev

) can be re-expressed as a sum of expansions of T , broken

trees, and i
(T÷e′,Lid

e′v
)

where the edges e′ have a greater distance from the root.

1. Homotopy Step Let v↑ be the upper vertex of the edge e. By claim 2.1.3,

i(T÷e,L
id
ev

) = i
(T÷e,Lid

v↑ )
+ i(T,L

i◦π
v ) + i(T,L

id
v )

The two terms on the right are broken trees, which are allowed terms in the expansion.

2. Associativity Step Let Ev↑ be the upward edge set of v↑. By claim 2.1.4

i
(T÷e,Lid

v↑ )
=


∑

(T ′,Lid
v↑ )

T ′ a stable expansion of T at v↑

i
(T ′,Lid

v↑ )

+


∑

(T÷e′,Lid
v
e′

)

e′ ∈ Ev↑

i
(T÷e′,Lid

v
e′

)

 .
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Each time we apply these two steps, we replace the 1-unstable tree T ÷ e with stable broken
trees, and 1-unstable trees of greater instability distance. The process terminates when unstable
term has moved to the external leaves of T .

We expand out this relation a little bit.

0 = i
(T÷e0,Lid

ve0
)

+ i(T,L
id
v0

) +
∑

v∈V (T )

i(T,L
i◦π
v ) +

∑
e∈Ec

i(T÷e,L
id
ve)

+
∑

(T ′,Lid
v↑ )

T ′ a stable expansion of T

i
(T ′,Lid

v↑ )
+

∑
v∈V (T ),v 6=v0

i(T,L
id
v )

=

m1
B ◦ i(T,L) +mdeg v0−1

B ◦

 ⊗
e∈Ev0

i(Te↑ ,Lhpl)

+

∑
e∈Ec

i(T÷e,L
id
ve

) +
∑

v∈V (T )

i(T
↓
v ,L

i
hpl) ◦m(T↑v ,L

m
hpl)


(3)

+


∑

(T ′,Lid
v↑ )

T ′ a stable expansion of T

i
(T ′,Lid

v↑ )
+

∑
v∈V (T ),v 6=v0

i(T,L
id
v )

 .

We now reduce the terms of eq. (3). From eq. (1), we conclude that

∑
ν(T )=k

T a stable tree

m1
B ◦ i(T,L) +mdeg v0−1

B ◦

 ⊗
e∈Ev0

i(Te↑ ,Lhpl)

 =
∑

i1+···+ij=k,k>1

±mj
B(ii1⊗· · ·⊗iij )

(4)
From eq. (2) we conclude that

∑
ν(T )=k

T a stable tree

∑
e∈Ec

i(T÷e,L
id
ve

) +
∑

v∈V (T )

i(T
↓
v ,L

i
hpl) ◦m(T↑v ,L

m
hpl)

 =
∑

(j1+i+j2=k)

±ij1+j2+1(id⊗j1 ⊗mi
A⊗id⊗j2)

(5)
The main idea of 2.1.1 is to notice that the expansions and contractions of T will cancel out
with expansions and contractions from other trees.

Proposition 2.1.6. The sum over all trees of broken trees from expansion terms and broken
trees from identity terms exactly cancel,

0 =
∑

ν(T )=k
T a stable tree


∑

(T ′,Lid
v↑ )

T ′ a stable expansion of T

i
(T ′,Lid

v
↑
e

)
+

∑
v∈V (T ),v 6=v0

i(T,L
id
v )

 (6)

Proof. We first note that there is a bijection⋃
T ′ stable,ν(T ′)=k

{e and internal edge of T ′} →
⋃

T stable,ν(T ′)=k

{ Stable expansions of T}

(T ′, e) 7→(T ′, T/e)

13



This, combined with the identification of internal edges of T ′ with non-root vertices gives us the
equality∑

ν(T ′)=k
T ′ a stable tree

∑
v∈V (T ),v 6=v0

i(T,L
id
v ) =

∑
ν(T ′)=k

T ′ a stable tree
e∈Ei(T ′)

i
(T,Lid

v
↑
e

)
=

∑
ν(T )=k

T is a stable tree
T ′ is a stable expansion of T

i
(T,Lid

v
↑
e

)

proving the proposition.

Remark 2.1.7. In the non-curved setting, where m0 = 0, there is a nice visualization of the
above lemma. Consider the poset of metric trees with ordering given by the minor relation. This
poset has a geometric realization as the standard cell decomposition of the Stasheff associahedra,
and the above relation states that contraction labellings of a tree T are related to the trees in it’s
cellular boundary, while the expansion byproducts of a tree are related to the cells which it is a
boundary of.
In the curved setting, there is no nice geometric picture of the lemma. Instead, consider the
poset of metric trees with internal leaves and a fixed number of external leaves, again with the
minor ordering relation. This is an infinite poset with a unique maximal member. Again, the
lemma above states that there is pairing between the expansion and contraction exhaustions of
tree of fixed valence, by viewing them as the ends of edges in the Hasse diagram of this poset
which are closer or farther from minimal element.

We are now in a place to prove the A∞ relations. Taking the relation eq. (3) over all trees
and applying eqs. (4) to (6)

0 =
∑

ν(T )=k
T is a stable tree



m1
B ◦ i(T,L) +mdeg v0−1

B ◦

 ⊗
e∈Ev0

i(Te↑ ,Lhpl)


︸ ︷︷ ︸

eq. (4)

+
∑
e∈Ec

i(T÷e,L
id
ve

) +
∑

v∈V (T )

i(T
↓
v ,L

i
hpl) ◦m(T↑v ,L

m
hpl)

︸ ︷︷ ︸
eq. (5)

+
∑

(T ′,Lid
v↑ )

T ′ a stable expansion of T

i
(T ′,Lid

v↑ )
+

∑
v∈V (T ),v 6=v0

i(T,L
id
v )

︸ ︷︷ ︸
eq. (6)


=

 ∑
i1+···+ij=k

±mj
B(ii1 ⊗ · · · ⊗ iij )

+

 ∑
(j1+i+j2=k)

±ij1+j2+1(id⊗j1 ⊗mi
A ⊗ id⊗j2)

+ 0

which, when rearranged, gives us the A∞ relations.

2.2 Application: The replacement tool

We can use the curved homological perturbation lemma to prove a classic result from homological
algebra.

Lemma 2.2.1 (Replacement Tool). Let A be a filtered A∞ algebra, and let B ⊂ A be a filtered
A∞ ideal, giving us the short exact sequence

B → A→ (A/B)

14



Let f : B → B′ be an A∞ homomorphism which is a homotopy equivalence on the chain level.
Then there exists a filtered A∞ algebra A′ with A′ homotopic to A and a short exact sequence

B′ → A′ → (A′/B′)

with (A′/B′) = (A/B).

Proof. For convenience, we write C = (A/B). We exhibit an A∞ structure on B′ ⊕ C. Let
f : B → B′ be our prescribed A∞ homotopy which is an equivalence. As a vector space,
A′ = B′ ⊕ C, and there exists a map π : A → A′. Furthermore, there is an inclusion of chain
complexes i : A′=0 → A=0 which is a homotopy inverse of the identity. We construct the A∞
structure on A′ using the homological perturbation lemma, along with the homotopy inverse
map.

The replacement tools allows us to modify filtered A∞ algebras by identifying subalgebras
and replacing them with homotopic subalgebras.

3 Cones and Fiber Products

In this section, we show that the classical constructions of mapping cones and fiber products
extend to tautologically unobstructed A∞ algebras and A∞ algebras respectively.

3.1 Mapping Cones

We begin by describing the mapping cone construction for tautologically unobstructed A∞
algebras.

Definition 3.1.1 (Left A∞ module). Let A be a tautologically unobstructed A∞ algebra. A left
module over A is a graded Λ-module M , along with a sequence of maps

m
k−1|1
A|M : A⊗k−1 ⊗M →M

satisfying the following quadratic A∞ module relation:

0 =
∑

j1+j=k

m
j1|1
A|M (id⊗j1−1

A ⊗mj−1|1
A|M )

+
∑

j1+j+j2=k | j2 6=0

m
j1+j2|1
A|M (id⊗j1A ⊗mj

A(a)⊗ id⊗j2−1
A ⊗ idB).

In these quadratic relations it appears that we are taking the sum over two different types
of compositions. However, this can also be described as the sum over all trees with 2 internal

vertices and leaves labelled A⊗k−1 ⊗M , and internal vertices labelled m
j|1
A|M or mj

A.

Given a morphism of A∞ algebras f : A → B, there exists a change of base formula from
A−Mod to B −Mod.

Claim 3.1.2. Suppose we have uncurved morphism of uncurved A∞ algebras f : A→ B. Then
the products

m
k|1
f : A⊗k ⊗B →B

m
k|1
f =

∑
k=j1...ji

mi+1
B (f⊗j1 ⊗ · · · ⊗ f ji ⊗ idB).

make B a A∞ module over A.
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Proof. We delay the proof of this statement until we prove the curved A∞ bimodule relations
in claim 3.2.3.

We use the structure of this multiplication to construct mapping cones in the category of

A∞ algebras. Let π
i|j
A|B : (A⊕B[1])⊗i+j → A⊗i ⊕B⊗j be the standard projection.

Definition 3.1.3. Let f : A → B be a morphism of A∞ algebras. The cone of f is the A∞
algebra on the graded vector space

cone(f) = A⊕B[1]

equipped with the higher product structures

mk
cone :=

((
mk
A ◦ πk|0A|B

)
⊕
(
fk ◦ πk|0A|B +m

k−1|1
f ◦ πk|1A|B

))
mk

cone

(
k⊗
i=1

(ai, bi)

)
=

(
mk
A

(
k⊗
i=1

ai

)
, fk

(
k⊗
i=1

ai

)
+m

k−1|1
f

((
k−1⊗
i=1

ai

)
⊗ bk

))

Proof. The proof is a verification of the A∞ structure. It is immediate from the quadratic
relations on A that the A-component of

∑
j1+j+j2=km

j1+j2+1
cone (id⊗j1 ⊗mj

cone⊗ idj2) will be zero.
It therefore suffices to look at the B-component of this relation. We will use that

πj1+1+j2|0 ◦ (id⊗j1cone⊗mj
cone ⊗ idj2cone) =(id⊗j1A ⊗mj

A ⊗ id⊗j2A ) ◦ πk|0A|B .

πj1+j2|1 ◦ (id⊗j1cone⊗mj
cone ⊗ idj2cone) =

{
(id⊗j

1

A mk
A ⊗ id⊗j2−1

A ⊗ idB) ◦ πk−1|1
A|B if j2 6= 0

idj1A ⊗(m
j−1|1
f ◦ πj−1|1

A|B + f j ◦ πj|0A|B if j2 = 0

The B-component of the quadratic A∞ relations is

π
0|1
A|B ◦

∑
j1+j+j2=k

mj1+j2+1
cone (id⊗j1cone⊗mj

cone ⊗ idj2cone)

=
∑

j1+j+j2

(
f j1+1+j2(πj1+1+j2|0(id⊗j1cone⊗mj

cone ⊗ idj2cone)

+mk−1|1 ◦ πk|1(id⊗j1cone⊗mj
cone ⊗ idj2cone)

)
=

∑
j1+j+j2

f j1+1+j2 ◦ (id⊗j1A ⊗mj
A ⊗ id⊗j2A ) ◦ πk|0

+
∑

j1+j+j2|j2 6=0

m
j1+j2|1
f ◦ id⊗j

1

A mk
A ⊗ id⊗j2−1

A ⊗ idB ◦πk−1|1

+
∑

j1+j+j2|j2=0

m
j1+j2|1
f ◦ (idj1A ⊗(m

j−1|1
f ◦ πj−1|1 + f j)) ◦ πj|0))

=

(∑
j1+j+j2

f j1+1+j2 ◦ (id⊗j1A ⊗mj
A ⊗ id⊗j2A ) ◦ πk|0

+
∑
j1+j+j2|j2=0m

j1−1|1
f ◦ (idj1 ⊗f j) ◦ πj|0))

)

+

(∑
j1+j+j2|j2 6=0m

j1+j2|1 ◦ (id⊗j
1

A ⊗mj
A ⊗ id⊗j2−1

A ⊗ idB) ◦ πk−1|1

+
∑
j1+j+j2|j2=0m

j1+j2|1
f ◦ (idj1 ⊗(mj−1|1 ◦ πj−1|1)) ◦ πj|0))

)
The first sum gives the quadratic A∞ homomorphism relations for f , and is therefore zero. The
second term is the quadratic A∞ module relations, is therefore zero.

A limitation of this cone construction is that it is only defined when the algebras A and
B are uncurved. This is due to our inability to construct a change of base homomorphism for
curved left A∞ modules. This limitation can be remedied by studying instead bimodules, and
constructing fiber products instead of mapping cones.
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A A A A A C B B B

f3 f0 f2 g3

m5
C

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

Figure 7: A typical term contributing to m
5|1|3
fg .

3.2 Fiber Product

Definition 3.2.1. Let A,B be A∞ algebras. An (A,B)- bimodule is a filtered graded Λ-module
M , along with a set of maps

m
k1|1|k2
A|M |B : A⊗k1 ⊗M ⊗B⊗k2

satisfying filtered quadratic A∞ module relations for each pair k1, k2

0 =
∑

j1+j+j2=k1+1+k2
j1+j<k1

m
j1|1|j2
A|M |B ◦ (id⊗j1A ⊗mj

A ⊗ id⊗k1−j1−j ⊗ idM ⊗ idk2B )

+
∑

j1+j+j2=k1+1+k2
j1≤k1≤j1+j

m
j1|1|j2
A|M |B ◦ (id⊗j1A ⊗mk1−j1|1|k2−j2

A|M |B ⊗ id⊗j2B )

+
∑

j1+j+j2=k1+1+k2
k1<j1

m
j1|1|j2
A|M |B ◦ (id⊗k1A ⊗ idM ⊗ idk2−j2−jB ⊗mj

B ⊗ id⊗j2B )

Again this appears to be three separate sums, but can be restated as one sum in the language
of trees.

Remark 3.2.2. When A and B are uncurved, then a (A,B) bimodule can be made into a left
A module by restricting

m
k|1
A|M := m

k|1|0
A|M |B .

The A∞ relations follow from the quadratic A∞ relations for the bimodule where the B-inputs
have been evaluated at 0.

It is important to note that this does not hold if the modules A and B are curved, as m0
B

terms may contribute to the quadratic A∞ module relations causing M to fail to be a left A
module!

Claim 3.2.3. Let C be an A∞ algebra and let f : A → C and g : B → C be filtered A∞
morphisms. Then C has the structure of a (A,B) bimodule.

Proof. This only requires that f and g be filtered A∞ maps of filtered A∞ algebras. The
bimodule structure is given the higher product maps

m
k1|1|k2
fg =

∑
h1+···hα1

=k1
i1+···+iα2

=k2

mα1+1+α2

C ◦ (fh1 ⊗ · · · ⊗ fhα1 ⊗ idC ⊗gi1 ⊗ · · · ⊗ giα2 )

These correspond to trees labelled in fig. 7. We show that these satisfy the A∞ bimodule
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A A A A A C B B B

f3 f0 f2

mk
A

g3

m5
C

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

(a)

A A A A A C B B B

f3 f0 mk′
C

fk1 fki

g3

m5
C

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

(b)

A A A A A C B B B

f3 f0

mk′
C

fk1 fki g3

m5
C

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

(c)

A A A A A C B B B

m5
C

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

fh1 ⊗ · · · ⊗ fhα1 ⊗ idC ⊗ gi1 ⊗ · · · ⊗ giα2

id⊗k1

C ⊗mk
C ⊗ id⊗k2

C

(d)

Figure 8: dg the A∞ change of base bimodule relations.

relations by explicit computation. Examining the terms of theA∞ relations gives us the following
preliminary relations:∑
j1+j+j2=k1+1+k2

j1+j<k1

m
j1|1|j2
A|M |B ◦ (id⊗j1A ⊗mj

A ⊗ id⊗k1−j1−j ⊗ idM ⊗ idk2B )

=
∑

j′1+j′+j′2=α1+1+α2

α1<j1+j′

mα1+α2+1
C (id⊗j

′
1 ⊗mj′

C ⊗ id⊗j
′
2) ◦ (fh1 ⊗ · · · ⊗ fhα1 ⊗ idC ⊗gi1 ⊗ · · · ⊗ giα2 ).

∑
j1+j+j2=k1+1+k2

j1≤k1≤j1+j

m
j1|1|j2
A|M |B ◦ (id⊗j1A ⊗mk1−j1|1|k2−j2

A|M |B ⊗ id⊗j2B )

=
∑

j′1+j′+j′2=α1+1+α2

j′1≤α1≤j′1+j′

mα1+α2+1
C (id⊗j

′
1 ⊗mj′

C ⊗ id⊗j
′
2) ◦ (fh1 ⊗ · · · ⊗ fhα1 ⊗ idC ⊗gi1 ⊗ · · · ⊗ giα2 ).

∑
j1+j+j2=k1+1+k2

k1<j1

m
j1|1|j2
A|M |B ◦ (id⊗k1A ⊗ idM ⊗ idk2−j2−jB ⊗mj

B ⊗ id⊗j2B )

=
∑

j1+j+j2=α1+1+α2

j′1+j′<α1

mα1+α2+1
C (id⊗j

′
1 ⊗mj′

C ⊗ id⊗j
′
2) ◦ (fh1 ⊗ · · · ⊗ fhα1 ⊗ idC ⊗gi1 ⊗ · · · ⊗ giα2 ).

We give a graphic explaining these three preliminary relations in fig. 8. Making these substitu-
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tions into the quadratic relation we want to prove,

∑
j1+j+j2=k1+1+k2


∑
j1+j<k1

m
j1|1|j2
A|M |B ◦ (id⊗j1A ⊗mj

A ⊗ id⊗k1−j1−j ⊗ idM ⊗ idk2B )

+
∑
j1≤k1≤j1+jm

j1|1|j2
A|M |B ◦ (id⊗j1A ⊗mk1−j1|1|k2−j2

A|M |B ⊗ id⊗j2B )

+
∑
k1<j1

m
j1|1|j2
A|M |B ◦ (id⊗k1A ⊗ idM ⊗ idk2−j2−jB ⊗mj

B ⊗ id⊗j2B )


=mB(id⊗mB ⊗ id) ◦ (f j1 ⊗ · · · ⊗ f j2 ⊗ idC ⊗gi1 ⊗ · · · ⊗ gij2 )

=0

This bimodule construction allows us to construct fiber products in the category of A∞
algebras.

Claim 3.2.4. Suppose we have a diagram of A∞ algebras,

A

B C

f

g

Then A∪C B := A⊕C[1]⊕B can be given the structure of an A∞ algebra, called the homotopy
fiber product which fits into the diagram

A ∪C B A

B C

πA

πB f

g

.

Proof. The A∞ structure on this algebra is similar to that considered for the mapping cone.
We denote by

π
k1|k|k2
A|C|B : (A⊕ C[1]⊕B)⊗(k1+k+k2) → A⊗k1 ⊗ (C[1])⊗k ⊗B⊗k2

the standard projection. The A∞ product on A⊕ C[1]⊕B is given by

mk
A∪CB =

(
(mk

A ◦ πk|0|0A|C|B)⊕
(
fk ◦ πk|0|0A|C|B +

( ∑
k1+1+k2=k

mk1|1|k2 ◦ πk1|1|k2
)

+ gk ◦ π0|0|k
)
⊕mk

B ◦ π0|0|k
)

The check that this satisfies the A∞ relations is similar to definition 3.1.3.

Remark 3.2.5. In the category of differential graded algebras, there is a well defined fiber
product given by

A ∪C B := {(a, b) | f(a) = g(b)}.
This definition does not carry over to A∞ algebras, as this construction implicitly uses the fact
that morphisms of DGAs have well defined images. However, a morphism of A∞ algebras do
not have a well defined image, as the homotopies described by the fk need not lie in the image
of f1.

4 Mapping Cylinders

In the category of chain complexes, there is a dictionary between morphisms and mapping
cylinders. In this section, we extend this dictionary to filtered A∞ algebras.
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4.1 Morphisms are Mapping Cylinders

Definition 4.1.1. Let f : A− → A+ be a morphism of A∞ algebras. Let id : A+ → A+ be the
identity. The mapping cylinder of f is the A∞ fiber product

Bf := A− ∪A+ A+.

We will denote a mapping cylinder as

A− ↔ Bf → A+

Definition 4.1.2. Let A+ and A− be two filtered A∞ algebras. A cylinder from A+ to A− is a
filtered A∞ algebra B which as a vector space is isomorphic to A− ⊕A+[1]⊕A+, and satisfies
the following properties.

• The chain differential on B is the chain complex mapping cylinder:m1
A− 0 0
f1 m1

A+ idA+ [1]
0 0 m1

A+

 .

• The projections of chain complexes

B

A− A+
π−

π+

can be extended to A∞ homomorphisms πk±, with πk± = 0 for all k 6= 1.

We denote such a mapping cylinder

A− ↔ B → A+.

The cylinders from A− to A+ are in correspondence with morphisms f : A− → A+.

Theorem 4.1.3 (Cylinders are Mapping Cylinders). Let A− and A+ be two filtered A∞ algebras.

1. To every cylinder A− ↔ B → A+, we can associate a morphism ΘB : A− → A+.

2. To every morphism f : A− → A+, we can associate a cylinder

A− ↔ Bf → A+.

3. These constructions are compatible in the sense that ΘBf = f .

Proof. Each statement is proven using statements from section 2 and section 3.
Proof of item 1 By definition, a mapping cylinder is chain homotopic to its negative end.

There exists a chain map

i : A− →Ba 7→ (a, 0,−f1(b))

The homological perturbation lemma allows us to construct the following associated A∞ homo-
morphisms

B

A− A+π−

π+
î

20



By taking the composition π+ ◦ î−, we get a new map from A− → A+ called the pullback-
pushforward map, which we will denote

ΘB = π+ ◦ i−.

Proof of item 2 From construction, the chain structure on Bf fits the definition of a mapping
cylinder.

Proof of item 3 It remains to show that ΘBf = f . An explicit computation suffices. One
checks that

π+ ◦ i(T,L) =

{
0 T has more than 1 vertex

h ◦mk
B |(A−)⊗k T has exactly 1 vertex

and

h ◦mk
B |(A−)⊗k = fk.

which shows that the pullback-pushforward map agrees with f .

4.2 Useful Comments about A∞ mapping cylinders.

Remark 4.2.1. There is a small piece of confusing notation here. The mapping cylinder B
is said to go from A+ to A−. However, the codomain and domain of fB : A− → A+ does not
seem to match with this convention. Recall that if X+ and X− are two different topological
spaces, that a continuous map θ : X+ → X− has topology X− ∪θ X+ × I, and gives a map on
cohomology from C•(A−)→ C•(A+). Since we’ve indexed our A∞ algebras to be cohomological
objects, the induced map from the mapping cylinder goes the opposite direction as expected.

Filtered A∞ algebras frequently show up as deformations of honest A∞ algebras, where we
may not have an explicit description of the terms at higher valuations. In many examples, we
only want to compute a portion of the A∞ structure. For this reason, the following corollary is
useful.

Claim 4.2.2. Suppose that B satisfies all of the conditions for a mapping cylinder, except we
replace m1

A− 0 0
f1 m1

A+ h−1

0 0 m1
A+

 ,

where h−1 : B → B is an invertible chain isomorphism. Then there still exists an inclusion
î : A− → B, and a pullback-pushforward map ΘB : A− → A+.

In some situations inspired from geometry, we will for instance know that h−1
=0, the graded-

energy portion of the map h, matches idA+ [1]. This is sufficient to prove that h−1 is an isomor-
phism.

Proposition 4.2.3 (Composition Rule). Let f : A0 → A1 and g : A1 → A2 be two A∞
homomorphism. The composition cylinder is defined by gluing two mapping cylinders together:

A1[1] A2[1]

A0 A1 A2

f g

idA1
[1] idA2

[1]

.

The composition cylinder is homotopic to Bg◦f .

In many situations, we will know that h−1=0 = idA+ [1]
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Proof. We use the homological perturbation lemma to construct a A∞ homotopy equivalence
between 

A1[1] A2[1]

A1

idA1
[1]

g

 ∼
 A2[1]


Applying the replacement tool (lemma 2.2.1) produces the cylinder Bg◦f from the composition
cylinder, and a homotopy equivalence between these two A∞ algebras.

Remark 4.2.4. Given B a mapping cylinder, it is not necessarily the case that BΘB = B, as
there is more than one way to construct the fiber product structure. We expect that there is a
notion of “homotopic relative ends” making BΘB equivalent to B. We explore this discrepancy
in section 4.3.

4.3 Example: A⊗ I

We look now specifically at the construction of the mapping cylinder of the identity. While this
construction can be completely handled using the fiber product that we described before, it is
useful from an expository perspective to consider this specific example, which sheds light on
how exactly the module structure comes into play in the constructions of A∞ algebras.

Before describing the A∞ algebra, we will fix an analogy to differential geometry. Let us
suppose that A is the Fukaya-Morse algebra CM•(X), where X is a smooth compact manifold.
We now look at the geometric mapping cylinder of the identity,X×[0, 1]. Our construction of the
mapping cylinder A↔ Bid → A should describe the Morse cochain complex on CM•(X×[0, 1]).
This requires understanding the chain complex CM•([0, 1]), and a Künneth formula for the
Morse cochain complex.

We use the following model for the A∞ algebra of the interval.

Definition 4.3.1. The interval algebra is the differential graded algebra generated by

I := Λ〈e−, x, e+〉

where

deg(e−) = deg(e+) = 1

deg(x) =1

with differential and product structure defined on the basis:

m1(e±) =x

m2(e±, e±) =e±

m2(x, e±) = −m2(e±, x) =x.

There is a well defined tensor product of chain complexes, and so

CF •(X × [0, 1]) = A⊗ I.

There is not an immediate way to construct an A∞ algebra structure on A×I. This in contrast to
the setting of differential graded algebras, where there is a canonical tensor product of differential
graded algebras. We provide two remarks clarifying the choices made in the construction of a
tensor product.
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Considerations from Bar Complex A standard trick for A∞ algebras is to replace
them with their bar-complexes,

T̄A := A⊕A⊗2 ⊕A⊗3 ⊕ · · · ,

which can be made homotopic to A and are equipped with a dg-coalgebra structure. A∞
homomorphisms become morphisms of these dg coalgebras.

Many of the constructions that we want to perform on the chain level between A∞ algebras
do not correspond to their chain level counterparts on the bar complex. Even in the settings of
DGAs, it is not the case that

T̄ (A⊗B) 6= T̄A⊗ T̄B.
If A and B are both differential graded algebras, then there is a homotopy equivalence between
these two differential graded algebras, although this homotopy equivalence is not canonical.
This shows the difficulty of using the bar-construction to define a tensor product.

In the setting of tautologically unobstructed A∞ algebras, this non-canonical choice can be
phrased in terms of picking a simplicial decomposition of the Stasheff associahedra [Lod11]. To
our knowledge, this construction has not been extended to curved A∞ algebras. We expect that
these choices are being made in the background of the construction of cones of tautologically
unobstructed A∞ morphisms, and the fiber product of A∞ algebras.

Considerations about Perturbations. We now give a geometric description for the
choices made in constructing the A∞ mapping cylinder. When defining the Fukaya-Morse
algebra CM•(X × [0, 1]), one needs to build a set of perturbations to achieve transversality of
the moduli space of trees. The choices of perturbation data are not determined by choices of
perturbation data used to define CM•(X) and CM•([0, 1]). As a result, one should not expect
there to be some canonical comparison between CM•(X × I) and CM•(X)⊗ CM•(I).

One (natural, but by no means canonical) choice of perturbation data is to perturb the
Morse flow trees in CM•(X × [0, 1]) in “left-to-right” order. This is the perturbation where the
amount of perturbation in the [0, 1] coordinate applied to a leaf of a flow tree is respects the
ordering of the leaves of the tree.

This choice of perturbation corresponds to the following choice of higher products on A⊗ I.

Definition 4.3.2. We say that an element
⊗k

i=1(ai ⊗ oi) ∈ (A ⊗ I)⊗k has ordered interval
component if

π0|k
(

k⊗
i=1

(ai ⊗ oi)
)

= e− ⊗ · · · ⊗ e− ⊗ x⊗ e+ ⊗ · · · e+.

Claim 4.3.3. Let A be a curved A∞ algebra. Define an A∞ structure on A⊗ I in the following
way:

mk

(
k⊗
i=1

ai ⊗ oi
)

:=


mk(a1 ⊗ · · · ak)⊗ e− if oi = e−

mk(a1 ⊗ · · · ak)⊗ e+ if oi = e+

mk(a1 ⊗ · · · ak)⊗ x if oi is an ordered interval sequence
0 otherwise

and the curvature term m0 by
m0 = m0

A ⊗ (e+ + e−).

This is an A∞ algebra.
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Proof. The proof is a computation of the A∞ relations by hand. We compute

∑
j1+j+j2=k

mj1+1+j2(id⊗j1 ⊗mj ⊗ id⊗ j2)

(
k⊗
i=1

ai ⊗ oi
)

based on cases of the sequence of {oi}.
• Suppose that all of the oi = e+. Then the A∞ relation follows trivially from the A∞

relations on A.

• Similarly, the A∞ relations hold if all of the oi are e−.

• Suppose that the string oi is ordered. Then for each j1 + j + j2 = k, the element(
j1⊗
i=1

ai ⊗ oi
)
⊗mj

 j1+j⊗
i=j1+1

ai ⊗ oi

⊗
 k⊗
i=j1+j+1

ai ⊗ oi


again has ordered interval component. Therefore, this reduces to the A∞ relation on A.

• The string oi is not interval ordered, all e+ or all e0. Then the contracted string(
j1⊗
i=1

ai ⊗ oi
)
⊗mj

 j1+j⊗
i=j1+1

ai ⊗ oi

⊗
 k⊗
i=j1+j+1

ai ⊗ oi


is not interval ordered, all e+ or all e−. The product evaluated on this term must be zero.

5 Homotopies of Chain Maps

In this section, we show how to recover the definition of a homotopy of A∞ homomorphisms
from our mapping cylinder constructions.

Definition 5.0.1. Let f−, f+ : (A,mk
A) → (B,mk

B) be a pair of A∞ homomorphisms. A A∞
homotopy between f− and f+ is a set of maps hk : A⊗k → B[−1] satisfying the curved A∞
homotopy relations∑
j1+i+j2=k

±hj1+j2+1(id⊗j1 ⊗mi
A⊗id⊗j2) = f j1− −f j2+ +

∑
i11+···+im1 =j1
i12+···+in2 =j2

±mj
B(f

i11
−⊗· · ·⊗f

im1
− ⊗hi⊗f

i12
+⊗· · · f

in2
+ )

A chain homotopy is filtered if h is a filtered map. A homotopy is weakly filtered if h1m0
A has

a positive valuation. The energy loss of a homotopy is least upper bound c so that hk increases
the filtration by at most k · c.

Given an A∞ algebra B, there are canonical projections π± : B × I → B.

Proposition 5.0.2. Let f−, f+ : A→ B be two A∞ homomorphisms. There exists a homotopy
between f− and f+ if and only if there exists an A∞ homomorphism f± : A → B ⊗ I so that
π− ◦ f± = f− and π+ ◦ f± = f+.

Proof. For this example, we use notation from the explicit construction of the A∞ structure on
B⊗ I from claim 4.3.3. We first show that an A∞ homomorphism f± : A→ B⊗ I gives an A∞
homotopy between π− ◦ f± and π+ ◦ f±. Define the map

hk := πB⊗x ◦ fk : A⊗k → B[1].
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We also look at the preliminary equalities Starting with the preliminary equalities

πB⊗e+ ◦ f± =f+

πB⊗e− ◦ f± =f−

πB⊗xmj
B⊗E =mj

B(πB⊗e− ⊗ · · · ⊗ πB⊗e− ⊗ πB⊗x ⊗ πB⊗e+ ⊗ · · · ⊗ πB⊗e+)⊗ x

We look at B ⊗ x component of the quadratic A∞ homomorphism relations.

πB⊗x
∑

j1+j+j2=k

f j1+j+j2

± (id⊗j1A ⊗mj
A ⊗ id⊗j2A ) = πB⊗x

∑
i1+···+ij

mj
B⊗I(f

i1 ⊗ · · · f ij ).

The left hand side of this relation is the left hand side of the A∞ homotopy relations:

πB⊗x
∑

j1+j+j2=k

f j1+j+j2

± (id⊗j1A ⊗mj
A ⊗ id⊗j2A ) =

∑
j1+j+j2=k

hj1+j+j2(id⊗j1A ⊗mj
A ⊗ id)A⊗j2).

Similarly, the right hand side of the A∞ homomorphism relation gives the right hand side
of the A∞ homotopy relations.

πB⊗x
∑

i1+···+ij
mj
B⊗I(f

i1 ⊗ · · · f ij )

=f− + f+ +
∑

i−1 +···i−j1+j+i+1 +···i+j2=k

mj1+1+j2
B (f

i−1
− ⊗ · · · ⊗ f

i−j1
− ⊗ hj ⊗ f

i+1
+ ⊗ · · · f

i+j2
2 )

The left hand side and right hand side together give us the A∞ homotopy relations. A similar
argument shows the reverse direction.

With this viewpoint, the A∞ homotopy equivalence can be described by maps to cylinders
B × I. Note that by section 4.3, there is not a canonical choice of A∞ structure on B ⊗ I, so
the A∞ homotopy relations constructed implicitly rely on the choice of A∞ structure chosen for
the cylinder. One take away from this discussion is that the A∞ homotopy relations are not
canonical, but exist up to some kind of homotopy.

The following A∞ algebra shows up frequently in nature and can be a useful way to build
homotopies between A∞ homomorphisms.

Definition 5.0.3. Let A−−, A−+, A+−, and A++ be four filtered A∞ algebras. Let

A−− ↔ B−± → A−+

A−− ↔ B±− → A+−

A+− ↔ B+± → A++

A−+ ↔ B±+ → A++

be four mapping cylinders. A homotopy square B±± with edges B−±, B±−, B+±, B±+ is a
filtered A∞ algebra, which as a vector space decomposes as

A−− A+− A+−

A−+[1] A++[2] A++[1]

A−+ A++[1] A++
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and presents as a mapping cylinder in two ways:

B−± ↔B±± → B+±

B±− ↔B±± → B±+

where the maps are the obvious projections.

Lemma 5.0.4 (Square Lemma). Let B±± be a homotopy square with edges B−±, B±−, B+±, B±+

. Let

Θ−± :A−− → A−+

Θ±− :A−− → A+−

Θ+± :A+− → A++

Θ±+ :A−+ → A++

be the four pullback-pushforward A∞ homomorphisms associated to the four edge mapping cylin-
ders. There is a A∞ homotopy between

Θ±+ ◦Θ−± ∼ Θ+± ◦Θ±−.

Proof of A∞ square lemma. By using the replacement tool, 2.2.1 we can replace A++ with the
homotopic cylinder

A+ +×I ∼ A++ ↔ A++[1]← A++

giving us the homotopic complex

A−− A+−[1] A+−

A−+[1] A++[2] A++[1]

A−+ A++[1] A++[2] A++

A++

.

We can construct the following homotopy equivalences using the composition rule for mapping
cylinders proposition 4.2.3,

A+−[1] A++[1]

A−− A+− A++

Θ±− Θ+±

 ∼


A++

A−− A++

Θ+±◦Θ±−




A−+[1] A++[1]

A−− A−+ A++

Θ−± Θ±+

 ∼


A++

A−− A++

Θ+±◦Θ−±


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Applying the replacement tool, we can replace the sides of the homotopy square:

A−

A++[2] A++[1]

A++[1] A++[2] A++

A++

Θ+±◦Θ±−

Θ±+◦Θ−±

This gives us the structure of a mapping cylinder for a morphism Θ±± : A−− → A++ ⊗ I. By
Proposition 5.0.2, Θ±+ ◦Θ−± ∼ Θ+± ◦Θ±− are A∞ homotopic.
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