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0.1 Introduction

The idea behind Morse homology is that the height function of a manifold captures a lot of data on the
topology of the manifold. More specifically, knowing the critical points of a height function on a manifold
gives you information on where the level sets f−1(t) of the manifold (with respect to the height function)
change topologically when you cross a critical values of the height function. Similarly, information on the
topology of the manifold M , you can get data on what type of height functions are possible to draw on
a manifold M . The notes for this section were largely based on [1]. Before we get started, here is some
notation that we may use here and in later sections:

0.2 Things about Morse Functions

Definition 0.1 Let f ∶M → R be a smooth function. A critical point of f is a point p ∈ C such that dfp = 0— that is all
the partial derivatives vanish.

Definition 0.2 Let ∇ be any connection on TM , and p a critical point of the function f . Then define the Hessian
H(f, p) ∶ TpM → T ∗pM as

H(f, p)(X) ∶= ∇X(df)

Lemma 0.3 This definition is independent of choice of connection.

Proof. Given two connections ∇ and ∇′, we can check that the difference ∇X(Y ) − ∇X(Y )′ is C∞

linear in both the Y and X arguments, therefore ∇X(Y ) − ∇X(Y )′ is a tensor. Therefore the value of
∇X(df) − ∇′

X(df) is only dependent on the value of the value of df . Since we are at a critical point, df = 0
and therefore the difference ∇X(df) − ∇′

X(df) = 0.
Basically, what this says is that ∇X(df) is dependent on the local behavior of df , while ∇X(df) − ∇′

X(df)
is only dependent on the value of df at a point p.

Another way to view the Hessian is the matrix of mixed partials at a point, which is stating that the Hessian
is a symmetric bilinear on TpM given by the matrix H = (∂ijf).

Definition 0.4 Let p be a critical point of the function f . Then we say that p i nondegenerate if the Hessian does not
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have a zero eigenvalue at p. Define the Morse index ind(p) to be the number of negative eigenvalue of
the Hessian. A function f is called Morse if all of its critical points are nondegenerate. The set of all
critical points of index i is denoted Criti(f).

The magics of differential geometry give us the following facts about Morse functions.

Lemma 0.5
Morse Lemma Let M be a manifold.

1. Functions in C∞(M) are generically Morse.

2. Let f ∶M → R be a Morse function. Then the critical points of f are isolated.

3. If p is a nondegenerate critical point of a function of index i, then there exist local coordinates on
M around p such that

f = f(p) − x2
1 −⋯x2

i + xxi+1 +⋯ + x2
n.

0.3 Gradient Flows

Recall, if M is a n-dimensional smooth manifold, a metric on M is a smoothly varying inner product
gij ∶ TpM × TpM → R. Another description is that gij is a symmetric (0,2) tensor field which is positive
definite at every p.

Definition 0.6 Given a Riemannian manifold (M,g), the gradient of a function f is the smooth vector field ∇f such that
for any vector field X , we have

g(∇if,X) = ∂if

The gradient of a function can be expressed in local coordinates as follows. Let gik be the metric tensor in
local coordinates. Then we have that

∇if = gik∂kf
This is stating that the gradient is obtained by raising the index on the differential ∂kf . Let f ∶ M → R
be a Morse function, and let V denote the negative gradient of f with respect to g. The flow of the vector
field V defines a one parameter group of diffeomorphism Ψs ∶ M → M for s ∈ R with Ψ0 = id and
dΨs

dt
= V .

Definition 0.7 Let p be a critical point of the function f . Define the descending manifold

D(p) ∶= {x ∈M ∣ lim
s→−∞Ψs(x) = p}

Likewise, define the ascending manifold

A(p) ∶= {x ∈M ∣ lim
s→+∞Ψs(x) = p}

In other words, the descending manifold is the set of all points that have gradient flows that “head away”
from the critical point p, and the ascending manifold is the set of all points that have gradient flows that
“head toward” a critical point p. In some texts, the terms stable and unstable manifold are used to describe
these two objects.
Notice that the index of a critical point gives us a lot of the structure of these manifolds. In particular, the
dimension of the descending manifold and codimension of the ascending manifold are equal to the index of
the critical point. This is such an important fact, that we will write it out again.

dim(D(p)) = indp

dim(A(p)) =n − indp

Now we really see where Morse theory is going. If we can understand how the ascending and descending
manifolds of critical points interact with each other, we can really get a handle on the structure of the
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manifold. Our general plan will be to construct a chain complex with groups given by the critical points,
and the morphisms determined by the types of flows the occur between different critical points. We will
have to impose a small (but important!) restriction on the ascending and descending manifolds to proceed
further:

Definition 0.8 Let (M,g) be a Riemannian manifold. A function f ∶M → R is called Morse-Smale if every ascending
manifold is transverse to every descending manifold in M with respect to the metric g. We then refer to
(f, g) as a Morse-Smale pair.

We won’t prove it here, but functions are generically Morse-Smale.
Given a Morse-Smale function, we can talk about the intersections of the ascending and descending manifolds
of critical points. These spaces contain all points on flows between p and q. It makes sense to talk about the
set of flows lines, which should be one dimension smaller than the set of all points on flows between p and q
(as each flow line is one dimensional)

Definition 0.9 Let p and q be critical points. A flow line from p to q is a path γ ∶ R→M such that

• The derivative of γ matches gradientf

• γ heads towards p and q, that is lims→−∞ γ(s) = p and lims→+∞ γ(s) = q
We call two flow lines equivalent if they differ by precomposition with translations by R.The set of
equivalence classes of flow lines is call the Moduli space of flow lines from p to q modulo translation,
and is denotedM(p, q).

As suggested before, the modulo space of flow lines can be identified with the intersection of descending and
ascending manifolds.

M(p, q) = D(p) ∩A(q)/R
The Morse-Smale conditions tell us that dimM(p, q) = ind(p) − ind(q) − 1. One slightly annoying thing
that we have to do now is apply orientations to the moduli spaces. for each p , choose an orientation of the
descending manifold. Then we have the isomorphism which determines the orientation of the moduli space
uniquely.

TD(o) ≃T (D(p) ∩A(q)) ⊕ (TM/TA(q))
≃TγM(p, q) ⊕ TγTγ ⊕ TqD(q).

Now we have givenM(p, q) some very concrete structure when the index of p and q differ by one. The
dimension ofM(p, q) is one dimensional, and the orientation that we associate to it assigns either a + or a −
to every point inM(p, q). in order to count the number of ± points in the moduli space, we will want to
know first that there are a finite number of points in the moduli space. This follows from the fact that the
moduli space is compact. In fact, even if the index of p and q differ by more than one,M(p, q) has a natural
compactification that is related to the structure of flow lines. The compactification ofM(p, q) is going to be
a manifold with corners, where the strata of this manifold are related to flows lines sitting in between p and
q

Definition 0.10 A manifold with corners is a second countable space N where every point has a neighborhood homeo-
morphic to Rn−k × [0,∞)k, and whose transition maps are smooth.

Theorem 0.11 If (M,g) is a closed Riemannian manifold and f is Morse-Smale, then for any two critical points p, q,
the moduli spaceM(p, q) has natural compactification to a smooth manifold with cornersM(p, q)

M(p, q)/M(p, q) = ⋃
k≥1

⋃
r1,...,rk

M(p, r1) ×M(r1, r2) × ⋅ ×M(rk, q),

This is the theorem that makes all of Morse theory tick. A visualization of the theorem is in Figure 1.
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Figure 1: A boomerang shaped spheroid, with some
parts filled in. The points marked x1, x2, t, z repre-
sent the different critical points of the Morse func-
tion. The flow space between x1 and y is repre-
sented in green ; x1 and z is the Orangeregion ;y
and z is represented in red. If we look atM(x1, z),
we see that it is a one dimensional space with open
endpoints. In order to compactify these endpoints,
we are going to need to add something. What we
add is the spaceM(y, z), which is two points cor-
responding to the two flow lines between y and z.
The resulting space that we get isM(x1, z)

z

y

x1

x1

The flows that correspond to points on the boundary ofM(p, q) are called broken flows. Each point on the
boundary can be represented by a sequence of flows from p to q that may pass through some other critical
values.
This theorem is important to us for two reasons. Firstly, if ind(p) − ind(q) = 1, the compactification of the
moduli space of flows is the moduli space of flows, so there are only a finite number of flows between p and
q. Secondly, the theorem gives us a very tangible structure on the broken flows between p and q if their index
differs by 2. Then we have that the broken flows correspond to exactly the boundary, and are given by

∂M(p, q) = ⋃
ind(r)=ind(p)−1

M(p, r) ×M(r, q)

This fact will become extremely useful later when defining the Morse complex, which is the next thing on
our list to do.

0.4 The Morse Complex

The Morse complex is a chain complex whose chain groups are given by critical points of index i, and whose
chain maps are going to be defined using properties of the flow lines between critical points. We can already
see that if we define the chain group CMi = Z Criti(f), then the Euler characteristic of this chain complex
should correspond to the Euler characteristic of the manifold. So it looks like we are going the right direction.
Let’s make this formal.

Definition 0.12 Given a Riemannian manifold (M,g) and a Morse-Smail function f , define the Morse complexCM● (M,g, f)
to be the chain complex with groups

CM(M,g, f) ∶= ZCriti(f)

and differential ∂mi ∶ Ci → Ci−1 to be the signed counting of gradient flow lines. We define it on the
generators p ∈ Criti(f) by

∂Mi (p) ∶= ∑
q∈Criti−1(f)

#M(p, q) ⋅ q

As notation, we will frequently denote CM● (M,g, f) by CM● (f, g).
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Lemma 0.13 Let M be a manifold, and (f, g) a Morse-Smale pair. Then (as claimed), CM● (f, g) is a chain complex.

Proof. We need to show that differential squared is equal to zero. Let ind(p) = i, and ind(q) = i − 2. Then
the contribution of the differential from p to q is given by

∑
r∈Criti−1(f)

#(M(p, r)) ×#(M(r, q) = #∂M(p, q)

As the signed number of points on a compact 1-manifold is 0, we have that ∂2 = 0.

Example 0.14 We now calculate the Morse homology for the sphere, given the Morse Smale pair of
Figure 1. We have that

C2 = Z{x1, x2} C1 = Z{y} C0 = Z{z}

The differential is defined as follows. We can define the orientation so that ∂(x1) = ∂(x2) = y, as there is
only one flow line from x1 or x2 to y. No matter what orientations we give the descending spaces of y
and z, we have that ∂(y) = 0, as the two flow lines will inherit opposite orientation. Therefore

HM
2 (S2) = Z HM

1 = 0 HM
0 = Z

Of course, the tricky thing to show is that what we have defined here is not dependent on the choice of
Morse-Smale pair. There are two different ways that you can show this. One way is to show that this theory is
identical to your favorite homology theory. However, it is more useful for this exposition to show that Morse
theory can produce results without relying on intuition from other homology theories ,as these techniques
will prove useful when looking at Floer theory later.
Let M be a manifold, and (f0, g0) and (f1, g1) be two Morse-Smale pairs, with associated chain complexes
(C0

● , ∂0) and (C1
● , ∂1). Let Γ = (ft, gt) be a path of functions and metrics. Our goal is to associate a flow to

this path so that we can map critical points of f0 to critical points of f1. Start by considering the vector field
on [0,1] ×M

V ∶= h ∂
∂t

−∇gtft

where by h we mean the function (t + 1)2(t − 1)2/4, and ∇gtft is the gradient of ft with respect to the
metric gt. Notice that the first part of the function has a critical point of index 1 at t = 0 and a critical point
of index 0 at t = 1 (due to the way that we picked h.) The second part of the function, ∇gtft achieves critical
points at t = 0 and t = 1 exactly at the critical points of f0 and f1 respectively. Therefore, the critical points
of this vector field are

Criti(V ) = {0 ×Criti−1(f0)⋃{1} ×Criti(f1)
LetMV ((0, p0), (1, q1)) be the set of flow lines from p0 to q1 along the flow of V .1 Define the Continuation
map ΦΓ ∶ C0

● → C1
● on generators

ΦΓ(p) ∶= ∑
q∈Criti(f1)

= #MV ((0, p), (1, q)) ⋅ q

Lemma 0.15 ΦΓ is a chain map.

Proof. Given critical points p ∈ Criti(f0) and q ∈ Criti−1 ∈ f1, have critical points (0, p) and (1, q) of
[0,1] ×M with respect to Γ. Therefore,MV ((0, p), (1, q)) is a one dimensional manifold (as in [0,1] ×M
p and q correspond to critical points differing in index by 2), and its compactification must have the number

1Here I’ve swept a lot of stuff under the rug. Specifically, we need V to ascending and descending manifolds that intersect
transversely. One can show that this is a generic property of Γ, provided that (f0, g0) and (f1, g1) are themselves Morse-Smale. Also,
even if Γ has this nice property, (ft, gt) are not necessarily Morse-Smale– in fact, they need to be more interesting for the homotopy Γ
to be non-trivial. The times t for which (ft, gt) are not Morse Smale are called “bifurcation times”, and correspond to a single critical
point splitting into two critical points
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of endpoints equal to 0 when counted with sign. The boundary ofMV ((0, p), (1, q)) is determined by
critical points that are of index one greater than p. As the critical points occur either when t = 0 or t = 1, we
have that

∂MV ((0, p), (1, q)) =⋃ r ∈ Criti(f1)MV ((0, p), (1, r)) ×Mf1(r, q)
∪⋃ r ∈ Criti−1(f0)Mf0(p, r)) ×MV ((0, r), (1, q))

One can check that this exactly gives you that the difference of ΦΓ∇0 and ∇1ΦΓ is zero.

Now that we have created a map between chain complexes, we want to show that this map is an isomorphism
on homology. We do it by showing that it is chain homotopic to the identity.

Lemma 0.16 Let {fd, gd∣d ∈ D} be a homotopy between Γ and Γ′. Here D is a digon (closed 2 manifold with two
edges and two vertices). Then this induces a chain homotopy between ΦΓ and Φ′

Γ.

Proof. Give D the metric ĝ so that the edges of F have length 1. Let f̂ ∶D → R be a function with index 2
critical point at one vertex of D and an index 0 critical point at the other vertex, and no other critical points.
Additionally choose f̂ such that the negative gradient of f̂ with respect to ĝ is tangent to the edges and agrees
with the negative gradient of h(t) that rises from Γ and Γ′. Then define a vector field V on D ×M by

X ∶= X̂ +Xd

where Xd is the negative gradient of fd with respect to gd. Let p0 be an index i critical point of f0 and q1 an
index i + 1 critical point of f1. Then look at the moduli space ofM(p0, q1) of flow lines between p0 and q1

in D ×M . This should be a zero dimensional space, as the index of p0 in D ×M is i + 2, while the index of
q1 in D ×M is i + 1. This gives us a map from K ∶ C●(M,f0, g0) → C●+1(M,f1, g1). We want to show
that this is a chain homotopy between ΦΓ and ΦΓ′ .
Let’s get a better handle on ∇1K +K∇0. Let p0 and q1 be critical points of index i in (f0, g0) and (f1, f1).
One can check that this is the signed boundary of the moduli space of flows between f0 and f1 in D ×M ,
less the number of broken flows that are broken along the edges of D. The flows broken along the edges
of D correspond exactly to the flow points between p0 and q1 that can be attributed to either ΦΓ or ΦΓ′ ,
depending on which edge you go along.
Another way to view this is to classify the flows between p0 and q1. The flow space should be 1 dimensional
in D ×M . We know that #{∇M(p0, q0)} = 0. On the other hand, we can correspond each point in the
boundary of the compactification with one of 4 types of broken flow lines, corresponding to 4 different types
of critical points of index i + 1 in D ×M .

1. Flows that go from p0 (which is index i in (f0, g0)), to a point of index i − 1 in (f0, g0), then to the
point q1. This contribution corresponds to K∂0.

2. Flows that go from p0 (which is index i in (f0, g0)), to a point of index i + 1 in (f1, f1), then to the
point q1. This contribution corresponds to K∂0.

3. Flows that go from p0 (which is index i in (f0, g0)) to a point of index i + 1 along the boundary of D
corresponding to the homotopy Γ, and then to the point q1. This contribution corresponds to ΦΓ

4. Flows that go from p0 (which is index i in (f0, g0)) to a point of index i + 1 along the boundary of D
corresponding to the homotopy Γ′, and then to the point q1. This contribution corresponds to ΦΓ′

This shows us that we have homotopy mod 2, which should be enough for us to believe that the orientations
will make everything work so that ∂K +K∂ = ΦΓ −ΦΓ′ .

Lemma 0.17 ΦΓ2×Γ1 is chain homotopic to ΦΓ2 ○ΦΓ1

Proof. Apparently the above proof works, but you replace “digon” everywhere with triangle” or something.
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Theorem 0.18 Hm(M,f, g) is independent of choice of f or g.

Proof. Let Φ be a homotopy from f0 to f1, and Φ′ a homotopy from f1 to f0. Then Φ′ ○Φ is a homotopy
from f0 to f0, and may be assumed to be the identity by Lemma 0.4. As a result, id = ΓΦ′○Φ = ΓΦ′ ○ ΓΦ on
homology. Similarly, id = ΓΦ○Φ′ = ΓΦ ○ ΓΦ′ on homology. So ΓΦ is an isomorphism on homology. So we
have no dependence on choice of f0 and f1.
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