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Abstract. We provide a new way to define Bar-Natan’s F2[u] knot homology theory. The u torsion of

BN•,• is shown to explicitly give Turner’s spectral sequence computing the filtered F2 homology. Finally,

we extended Schumakovitch’s map in a categorical way to exhibit some further structure on the F2 and
reduced F2 homology.
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1. Introduction

1.1. History and Current Literature. Since Khovanov [Kho99] introduced his homology theory for links
in 1999, there has been a lot of progress in categorification of knot polynomials, and investigation on knot
homology theories in general. In 2004, Bar-Natan published [Bar04] a description of the Khovanov Bracket,
[[L]]• as a homotopy category over the cobordisms. Thie gave an explicit way to produce new homology
theories for knots, via the application of TQFT’s to the Khovanov bracket.
In his paper, Bar-Natan made many conjectures on Khovanov homology and its sister theories, including
the homological thinness for alternating links, and questioning if the application of tautological functors for
the Khovanov bracket yielded theories that provided additional data on a link. The first conjecture was an-
swered by Eun Soo Lee in her paper [Lee05] and [Lee02], which proved the thinness of alternating knots via
the construction of an additional differential on the Khovanov bracket. Jacob Rasmussen [Ras10] furthered
this work with by looking at the spectral sequence that arrived out of Lee’s endomorphism. In his paper,
Jacob Rasmussen constructed the s invariant, which he used to give a combinatorial proof of the Milnor
Conjecture.
On a different route, in 2003 Peter Ozsváth and Zoltán Szabó published their paper [OS05] on the relation-
ship between Heegard-Floer Homology of branched double-covers of links, and the Khovanov homology a
link. Their relationship showed the existence of a spectral sequence from Khovanov homology to the Heegard
Floer homology. This work paved way for a series of papers which asked if Khovanov homology detected the
unknot. In 2010, Matthew Hedden and Liam Watson [HW10] determined a large class of knots for which the
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Khovanov homology could detect the unknot. Recently, in 2011, Kronheimer and Mrowka published a paper
proving that Khovanov homology could detect the unknot. They did this by constructing a new spectral
sequence which descended to a new Floer homology theory[KM11]
Rasmussen’s s invariant was generalized to a whole family of knot invariants called concordance invariants. In
2005, Cirprian Manolescu and Brendan Owens constructed a concordance invariant for Heegard-Floer homol-
ogy, called the τ invariant[MO05]. Noticing broad qualities that these theories have in common, Rasmussen
in [Ras05] characterized a knot homology theory to be a chain complex whose filtered Euler characteristic
categorifies some classical polynomial invariant, and whose filtered chain homotopy type is an invariant, and
has a spectral sequence which descends to an invariant which depends only on “coarse” data on the link. In
the case of Khovanov and Heegard Floer homology, this “coarse” invariant is the s and τ invariant.
In this paper, I wanted to answer a question about a particular homology theory over F2[u] modules intro-
duced in [Bar04]. Turner found several relations between this theory (the Bar-Natan complex) and a filtered
theory that was over F2, and analyzed the spectral sequences that arose out of both theories [Tur04]. I also
wanted to look at reduced versions of filtered homology theories to see if the reduced homology theory and
the full homology theory extended to the same spectral sequence. Schumakovitch showed in [Shu04] that
there is a splitting of the F2 homology theory into two copies of the reduced homology theory. The natural
question to ask in relation to the filtered Bar-Natan theory is if this splitting extends to Turner’s spectral
sequence.

1.2. Notation. Let us set up some notation. In this paper, we will be interested in three homology theories
rising from the Khovanov Bracket presented in [Bar04]. For notation and grading conventions we will be
following that presented in [Tur06]. In order to describe our homology theories, we will be giving the TQFT
associated to them as described in [Bar04].
The (unfiltered) F2 homology theory arises from the TQFT associated to the Frobenius algebra V = F2[x]/x2.
The Frobenius algebra over V is equipped with the following multiplication structure

m′(1⊗ 1) = 1 m(1⊗ x) = m′(x⊗ 1) = x m′(x⊗ x) = 0

and an associated comultiplication structure

∆′(1) = 1⊗ x+ x⊗ 1 ∆′(x) = x⊗ x
By setting the quantum dimension of 1 to q1, and the quantum dimension of x to be q−1 we have that
dimq(V ) = q + q−1. In order to make the maps ∆′ and m′ quantum graded, we will attach a grading shift
to the homology. Let v have homological index i and suppose the span of v has q-homogeneous dimension.
Then we define the quantum grading of v to be

dimq(span(v)) + i

Let C•,•F2
(D) be the F2 complex associated to a diagram D of a link L. The Khovanov complex is a bigraded

theory, with a homological grading arising from the Khovanov bracket, as well as the quantum grading
defined above. While C•,•F2

is technically a cohomology theory, we will call it a homology theory to be
consistent with existing literature. As notation, we will always index the homological grading with i, and
index the quantum grading with j.
C•,•F2

(D) is an invariant of the link up to homotopy. In particular, the homology of C•,•F2
(D) is an invariant of

the knot. We denote the homology as KH•,•F2
, and the differential on this complex as d′. Bar-Natan gives an

excellent and detailed construction of this homology theory in [Bar02], working with coefficients in Z instead
of F2.
We construct the F2 filtered homology theory, which was initially given in Turner’s paper. As a F2 module,
C•F2

is isomorphic to C•,•F2
. However, the TQFT assigns a different differential to this complex, which is

defined with the following multiplication and comultiplication maps.

m̄(1⊗ 1) = 1 m(1⊗ x) = m(x⊗ 1) = x m(x⊗ x) = x

∆(1) = 1⊗ x+ x⊗ 1 + 1⊗ 1 ∆(x) = x⊗ x
This differential is no longer quantum graded, but it is at least quantum filtered. We denote the filtered
theory as C̄•F2

, with homology B̄N•F2
and differential d̄.

Turner’s paper looks closely at the F2[u] homology theory of a link. While we do not use a TQFT to construct
this homology theory, the approach is similar. To each circle we associate the F2 module W = F2[u][x]/x2 .
Again, the quantum grading of 1 is 1 and the quantum grading of x is −1. The twist on the previous theory
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is that the variable u is given a quantum grading of −2. This ensures that the following multiplication and
comultiplication maps are quantum graded:

m(1⊗ 1) = 1 m(1⊗ x) = m(x⊗ 1) = x m(x⊗ x) = ux

∆(1) = 1⊗ x+ x⊗ 1 + u1⊗ 1 ∆(x) = x⊗ x
The complex for this homology is again bi-graded, and will be denoted C•,•F2[u](D), and the homology of this

complex will be written as BN•,•(L) - the Bar-Natan Theory of a link. While KH•,•F2
(L) is a 2 indexed

object (having homological grading i and quantum grading j), elements in Bar-Natan have 3 gradings: each
element has an additional u degree. We will always denote the u degree with the variable k.
As a final piece of notation, we will frequently write KH•,•F2

for KH•,•F2
(L) or KH•,•F2

(D).

1.3. Known Results. Without going into detail, here are some known results about C•,•F2
, C̄•F2

, and C•,•F2[u].

Theorem 1.1 (Turner’s Spectral Sequence [Tur04]). There is a spectral sequence from KH•,•F2
to B̄N•F2

, and
the pages of this spectral sequence are link invariants.

This means that the filtered chain homotopy type of C̄•F2
is a link invariant.

Theorem 1.2 (Structure of B̄N•F2
[Tur04]). The dimension of K̄h•F is 2l, where l is the number of link

components.

These two theorems are a pointer to F2 being a homology theory in the definition of Rasmussen [Ras05].

Theorem 1.3 (Isomorphism of high u degree homology [Tur04]). For sufficiently large j, there is an iso-
morphism of chain complexes between BN•,j and C̄•F2

.

This theorem shows that there is a strong relation between the filtered Bar-Natan theory, and motivates
the result of this paper.

Theorem 1.4 (Splitting of F2 homology into reduced components [Shu04]). KhF2
splits into two copies of

K̃hF2
, the reduced Khovanov homology. In particular, there is a exact differential on KhF2

of homological
degree 0 and u degree 2.

Schumakovitches result shows that the F2 reduced theory is equivalent to the F2 full theory. Turner shows
that there exists a similar spectral sequence to that of Theorem 1.1 on the reduced theory. It is natural to
ask if this spectral sequence splits in a fashion similar to the unfiltered theory.

1.4. Summary of Results. Finally, a summary of the results presented in this paper: We start by giving
a presentation for the C•,•F2[u] that motivates our indexing notation.

Lemma 2.1. There is a bicomplex whose total homology is BN•,•

This structure will give us insight into the u torsion of our homology theory

Theorem 3. Let v ∈ BN•,•. Suppose that Turner’s spectral sequence converges after the m page. If
um−1v 6= 0 then unv 6= 0 for all n ≥ m− 1

Corollary 3.2. Suppose that the spectral sequence for computing Bar-Natan theory converges after m
pages. Elements with u degree greater than m are wholly determined by BN•,•∞

We attempt to extend Schumakovitch’s result [Shu04] on the reduced homology theory over F2 to the
reduced homology theory over F2[u].

Theorem 4.6. There is a differential s∗ on BN•,• that shifts quantum degree by 2 and is exact on homology.

Finally, we give an explicit equivalence between the F2[u] homology and the pairings given by the filtered
theory.

Theorem 6.4. The number of elements in BN•,• that only have representatives that are filtered in u degree
is no more than 2l.
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Theorem 6.6. There is an equivalence of data between the pairing data given by Turner’s spectral sequence
and the u torsion in BN•,•.

What we show is an equivalence of categories: the homotopy category of chain complexes over F2[u], and
the filtered homotopy category over F2.

2. The Bar Natan Bicomplex

While F2[u] theory has the advantage of being a graded theory, the u grading is artificial in nature: in
fact, the most natural way to compute F2[u] homology is to use a spectral sequence filtered in the u degree.
In this section, we give an alternative definition for the F2[u] homology.
As F2[u] theory is graded, it is natural to split it across its quantum grading. We can write

C•,•F2[u] =
⊕
i

C•,jF2[u]

This simplification allows us to compute each subcomplex C•,jF2[u] separately. However, these subcomplexes

can be difficult to compute themselves, as the maps they contain are only u filtered, as oppose to being
u graded. One solution to computing the homology of C•,jF2[u] is to use a u filtered spectral sequence (as

given by Turner [Tur04]). We propose a different way to view that C•,jF2[u], which showcases the fact that the

differential only increases the filtration by at most 1.

Definition 2.1. Let BCk,lj [L] be the F2 module generated by elements of C•,jF2[u] with homogeneous u grading

l and homological index k + l. Equip BC•,•j [L] with a bicomplex structure with these two differentials:

• A differential with (k, l) degree (0, 1) corresponding to the differential d′ from unfiltered F2 theory.
• A differential Φ with (k, l) degree (1, 0) corresponding to new multiplication and comultiplication

maps:

mΦ(1⊗ 1) = 0 mΦ(1⊗ x) = mΦ(x⊗ 1) = 0 mΦ(x⊗ x) = ux

∆Φ(1) = u1⊗ 1 ∆Φ(x) = 0

We call this F2 bicomplex the Bar-Natan Bicomplex of a link L.

Keeping track of all of the indices is a pain, so here is a quick reference:

BC
u-grading, (homological grading -u grading)
Quantum Grading

The commutativity of d′ and φ is clear from checking that d′φ− φd′ = 0.

Lemma 2.1. The total homology of the BCk,lj is BN•,j

Proof. The total homology of a bicomplex is given by objects Tot(BCk,lj ) =
⊕

k+l=iE
k+,l
j,0 and is endowed

with the differential dtot = d′+φ. From our original construction of the spectral sequence,
⊕

k+l=iE
k,l
j,0 = Ci,j

and the differential d = d′ + φ = dtot. �

With this language, instead of treating the complex as having a filtration, we can think of the u as an
additional index. There is also a nice way to visualize this theory. One can think of this theory as a stack of
“sheets”, with each sheet corresponding to one quantum grading 1. Note that this theory only has support

for positive l, and as CF2[u] only has support of every other quantum grading, BCk,lj only exists for every
other j
With this notation we see that there are a number of different ways to compute the homology of the this
theory using spectral sequences. While we take homology with respect to the homological index first, or
with respect to the u index first, taking homology with respect to the homological index is more useful:

Lemma 2.2 (Turner’s Spectral Sequence [Tur04]). Let E0, E1, E2 . . . be a spectral sequence that computes

the total homology of C•,jF2[u] by first taking a differential of k degree 1. Then E1, E2, . . . are link invariants.

Proof. As taking a differential first in the k direction corresponds to taking the differential d′, we see that
the E1 page is (as a module) the sum of many copies of KH•,•. It follows that the higher pages are link
invariants. �
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BC•,•1

BC•,•−1

BC•,•−3

BC•,•−5

Figure 1. A stack of BC•,•j makes up C•,•F2[u]

a

BC•,•j

ua

BC•,•j−2

u2a

BC•,•j−4

u

u

Figure 2. Multiplication by u map between bicomplexes

We may have well taken the spectral sequence along the other index. This spectral sequence would be
k filtered instead, from computing the l-indexed homology first. While the pages of this spectral sequence
are not invariants of the link, one can use both spectral sequence as additional information to aid the
computation of the total homology.

2.1. Multiplication by u. The action of u on the complex C•,•F2[u] is a chain endomorphism. It therefore

induces a map u∗ on the homology BN•,•. As multiplication by u is shifts quantum grading by −2, we can
think of this as a map

u : BC•,•j → BC•,•j−2

which shifts entries down along the diagonal. This is perhaps best seen in Figure 2. The Bicomplex structure
of Bar-Natan theory gives us some insight into how u multiplication should work. We first notice that BC•,•j−2

is a brutal truncation of BC•,•j in the l (u-indexed) direction. This tells us indication that the total homology

of BC•,•j−2 and BC•,•j only differ by a small amount, and that difference should encode data on how we cut
our complex apart. In fact, for large enough j, we expect the homology to be an isomorphism.

Lemma 2.3 (Stable Bar-Natan Theory [Tur04]). There exists j′ such that for all j′′ > j′, we have that
BC•,•j′

∼= BC•,•j′′

Proof. The finiteness of support of the Khovanov complex implies that for sufficiently large j, the brutal
truncation taking BC•,•j′′ → BC•,•j′ is an isomorphism. �

Corollary 2.4 (Turner [Tur04]). There exists i′ such that for all j′′ > j′, we have that BN•,j
′ ∼= BC•,j

′′

We abuse notation and call this particular bicomplex BC•,•∞ with homology BN•,∞. When we write
BC•,•∞ we mean the smallest i such that BC•,•i is the full complex. What this isomorphism (at large u
degree) of multiplication by u shows is the obstruction for multiplication by u to being a isomorphism of
complexes is the truncation of the bicomplex along the u index.
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Theorem 2.5. Let [v] ∈ BN•,•. Suppose that Turner’s spectral sequence converges after the m page. If
um−1[v] 6= [0] then un[v] 6= [0] for all n ≥ m− 1

Proof. Suppose that [v] ∈ BN•,• has non trivial image under multiplication by um−1. Then we have that
um−1v ∈ ker d, but um−1v 6∈ Im d. We now want to show that umv survives in the homology.
As d(umv) = ud(um−1v) = u0 = 0, we have that umv is in the kernel of d. Now it remains to show that
umv is not in the image of d. Suppose for contradiction that there exists w such that d(w) = umv. We have
that the minimal u degree of w must be 0, because there is no w′ such that d(uw) = umv. Therefore, there
must be an induced differential between 0 degree u-homogeneous part of w and umv. Of course, this induced
differential must be of u grading m. But there are no induced differentials of u filtration m.
Repetition of this argument shows that unv is in the homology for all n > m �

Recall, we call a link F2 thin if KHF2
is supported on two diagonals.

Corollary 2.6. Suppose that a link is F2 thin. Then every element in BN•,• is either u torsion free or has
u torsion 1.

Proof. This follows from Turner’s result [Tur04] that F2 thin knots converge on the E2 page, and Theorem
3 �

These theorems tell us pictorially how our homology should look.

Lemma 2.7. Suppose that u[v] 6= [0] in BN•,•. Then [v] 6= [0].

Proof. This proof simply follows from the fact that multiplication by u is like moving the brutal truncation
of BC•,•j Since d(uv) = ud(v) = 0, it is easy to see that v ∈ ker d. It remains to show that it is not in the
image of d.
Suppose that there did exist w such that d(w) = v. Then d(uw) = d(uv), which would imply that [uw] = 0,
contradicting the nontriviality of [uv]. �

BN•,• theory can be decomposed into a band of u-torsion homology and a tower of u-stable
homology. Lemma 2.7 shows that there is a set elements {va} (not necessarily u homogeneous) which have
the following properties

• They have a term of u degree 0
• The classes [va], [uva], [u2va], . . . generate BN•,•

Later we will strengthen this result for the band of the homology.

3. Computing BC•,•∞

To get some additional structure on Bar-Natan theory, we look at the structure for high quantum degree.
A lot of the work in this section follows that of Turner, who has determined the dimension of high quantum
degree Bar Natan theory by finding an isomorphism to the filtered theory. Here, we compute the dimension.
For this section, we return to thinking of BN•,• as a module theory, rather than a bicomplex theory.

We pick a new basis for Bar Natan complex. While the usual basis of

1, x, u1, ux, u21, u2x . . .

for V is good in that the elements are homogeneous in u degree, we want a basis which plays nice with the
differential of complex. Turner [Tur04] uses the basis 1 + x, x for computing the filtered Bar-Natan theory:

this basis has the pleasant property of diagonalizing the differential on C
•,•
F2

, but it has the unpleasant
property of be nonhomogenous in quantum degree. Fortunately, in the F2[u] theory we can find a basis
which almost diagonalizes the differential, and is homogeneous in quantum grading.
Consider the elements a = u1 + x, b = x.

1, a, b, ua, ub, u2a, u2b . . .

form a basis for F2[u]{1, x} as before. This basis has two important properties. First off, it diagonalizes the
differential wherever the u grading is greater than 1. Secondly, the basis is homogeneous in quantum degree.
We observe that multiplication and comultiplication now have the following form:
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-1

-3

-5 1 1

-7 2 2

-9 1 1

-11

-1

-3

-5 1

-7 1 1

-9 1

-11

-1

-3

-5 1

-7

-9 1

-11

-1

-3

-5 1

-7

-9

-11

Figure 3. A possible spectral sequence

m(a⊗ a) = ua m(a⊗ b) = 0 m(b⊗ b) = ub

∆(a) = ua⊗ a ∆(b) = b⊗ b
Note that in all cases but co-multiplication of b, the differential raises the u degree of the basis element by
one. This is an easy way to see that the differential on the Bar-Natan complex splits as d = d′ + φ, where
the u degree of d′ is 0, and the u degree of φ is 1.
From here we use a technique of Lee to show that the generators for homology must be fairly simple. We
construct an inner product on the basis a, b for the homology, by letting a, b be an orthonormal basis. We
then define a dual differential on the complex, d∗ which is given by multiplication and comultiplication maps

∆∗(a⊗ a) = ua

∆∗(b⊗ b) = b

∆∗(a⊗ b) = 0

m∗(a) = ua⊗ a
m∗(b) = b⊗ b

A result of a complex equipped with a differential that is diagonal with respect to the inner product is that
the homology at a point is given by the intersection of kernels and dual kernels.

Theorem 3.1 (Turner [Tur04]). The dimension of BN•,∞F2[u] as a F2 module is 2l, where l denotes the number

of link components.

Proof. Once we look at a sufficiently high quantum degree, the basis for the chain complex C•,∞F2[u] is given

completely by terms of the form una, unb, a basis that diagonalizes the differential. We should expect the
homology to be relatively simple for large u degree. We follow Lee’s proof [Lee02] to show that the homology
is of degree 2. In fact, we can explicitly provide generators for the homology. We take a smoothing and
label the circles in the smoothings a or b. This gives us an element in the chain complex. If every pair of
circles that share crossing have different labels, then the corresponding element in the chain complex lies
in the homology, as the application of the multiplication or comultiplication map will always take a pair of
different labellings to 0. Lee shows that the only smoothings that have this property are those corresponding
to a resolution of the knot in an orientation preserving fashion. For a link, the number of such resolutions is
2l, where l is the number of link components. From here, Lee exhibits two steps to compute the homology.
First, we show that there are labeled states that have the property above. Then we want to show that these
states are sufficient for generating the whole homology.

�

When the theory is plotted on a grid with homological index on one axis, and the quantum grading on
the vertical axis, the places where these 2l generators take support make a tower of homology. We will refer
to it as such from here on out.
The structure of BN•,∞F2[u] tells us that the differential d is almost exact for large u degree. This shows that

the spectral sequence computing BN•,∞F2[u] induces a pairing on the elements on BC•,•∞ except on 2l elements.

Two elements are paired if in the spectral sequence they are connected by an induced differential.

Corollary 3.2. Suppose that the spectral sequence for computing Bar-Natan theory converges after m pages.
Elements with u degree greater than m are wholly determined by BN•,∞
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1 1

2 2

1 1

Figure 4. Pairing elements in the spectral sequence

Proof. We have by Theorem we have that if [v] has support in homology, then [umv] has support in homology
for all m greater than n. �

4. Reduced Bar-Natan Theory

In this section, we aim to extend Schumakovitch’s result on the reduced F2 homology to the F2[u] homology.

Theorem 4.1 (Schumakovitch [Shu04]). The F2 homology theory splits as two copies of the reduced theory

Recall that the reduced F2[u] theory is given by the subcomplex where a specially noted circle in the state
diagram is always given a x marking [Kho02]. For simplicity, when we will place a dot over the entry that

is marked. We will denote this subcomplex and theory C̃•,•F2[u] and B̃N•,• respectively.

Theorem 4.2. Suppose that the spectral sequence collapses on the E2 page. Then the u torsion section of

the F2[u] homology splits into two copies of the reduced theory, B̃N•,•

We follow the footsteps of Schumakovitch’s proof. We first define a chain map

s : C•,•F2[u] → C•,•F2[u]

which decreases quantum grading by two. Let v ∈ C•,• be a state. Then let Vk be the set of all states where
x has been replaced by 1 in v a total of k times. Then define

s(v) =

∞∑
k=1

(uk−1
∑
w∈Vk

w)

For example,

s(1⊗ x⊗ x⊗ x) =1⊗ 1⊗ x⊗ x+ 1⊗ x⊗ 1⊗ x+ 1⊗ x⊗ x⊗ 1

+ u(1⊗ 1⊗ 1⊗ x+ 1⊗ 1⊗ x⊗ 1 + 1⊗ x⊗ 1⊗ 1)

+ u2(1⊗ 1⊗ 1⊗ 1)

We can alternatively define s recursivly on v. We first break into subcases on the length of v, then on the
leading letter.

(1) Suppose that v has length greater than 1. Then we write v = a⊗ w, where a = 1 or a = x.
(a) If a = 1, then s(v) = 1⊗ s(w)

(b) If a = x, then s(v) = u1⊗ s(w) + 1⊗ w + x⊗ s(w)
(2) Suppose that v has length one. Then we have that s(1) = 0, and s(x) = 1

Lemma 4.3. The map s commutes with the differential on C•,•F2[u]

Proof. There is just some bookkeeping to do here. We will show it for the most complicated case. Let m be
the multiplication map which acts on the first two entries of a state v = x⊗x⊗w, where w is the remainder
of the state v.

s(m(x⊗ x⊗ w)) =s(ux⊗ w)

=u(1⊗ w + x⊗ s(w) + u ∗ 1⊗ s(w))
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m(s(x⊗ x⊗ w)) =m(u21⊗ 1⊗ s(w))

+m(u(1⊗ x⊗ s(w) + x⊗ 1⊗ s(w) + 1⊗ 1⊗ w))

+m(x⊗ x⊗ s(w) + 1⊗ x⊗ w + x⊗ 1⊗ w))

=u(1⊗ w + x⊗ s(w) + u ∗ 1⊗ s(w))

�

There is an additional map k : C•,•F2[u] → C•,•F2[u] which increases the u grading by 2, and commutes with the

differential. The map k takes

1̇ 7→ ẋ

and

ẋ 7→ u̇x

Lemma 4.4. k commutes with the differential on C•,•F2[u]

Proof. Again, we show the most difficult case

k(∆(1̇⊗ w)) =k(1̇⊗ x⊗ w + ẋ⊗ 1⊗ w + u · 1̇⊗ 1)

=ẋ⊗ x⊗ w + u · ẋ⊗ 1⊗ w + u · ẋ⊗ 1⊗ w
=∆(k(1̇⊗ w))

�

As both s and k commute with the differential, they descend to maps on the homology, s∗ : BN•,• →
BN•,• and k∗ : BN•,• → BN•,•.

Lemma 4.5. s is acyclic on C•,•F2[u]

Proof. There is a combinatorial proof of this fact, which is not revealing of the structure of homology. We
give that proof now, and save the topological proof until the section on tautological functors. �
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Proof. We want to show that s(s(v)) = 0 where v is some state generating C•,•F2[u]. Let m be the number of

x’s that appear in v. Then we have

s(s(v)) = s(

∞∑
k=1

(uk−1
∑
w∈Vk

w))

=

m∑
k=1

(uk−1
∑
w∈Vk

s(w))

=

m∑
k=1

(uk−1
∑

wα∈Vk

(

m−k∑
j=1

(uj−1
∑
y∈Wα

j

y))

=

m∑
l=2

∑
k+j=l

ul
∑

wα∈Vk

∑
y∈Wα

j

y

=

m∑
l=2

ul−1

 ∑
k+j=l
k<j

 ∑
wα∈Vk

∑
y∈Wα

j

y

 +
∑
k+j=l
k>j

 ∑
wα∈Vk

∑
y∈Wα

j

y

 +
∑
k+j=l
k=j

 ∑
wα∈Vk

∑
y∈Wα

j

y




=

m∑
l=2

ul−1

 ∑
k+j=l
k<j

 ∑
wα∈Vk

∑
y∈Wα

j

y

 +
∑
k+j=l
k<j

 ∑
wα∈Vj

∑
y∈Wα

k

y

 +
∑
k+j=l
k=j

 ∑
wα∈Vk

∑
y∈Wα

j

y




=

m∑
l=2

ul−1

0 +
∑
k+j=l
k=j

 ∑
wα∈Vk

∑
y∈Wα

k

y




These middle terms also match up, as there is a pairing between Wα
k and W ᾱ

k , where wᾱ has 1 where wα
has a x marked. This shows that s is an exact function. �

Theorem 4.6. The function s∗ is acyclic on BN•,•

Proof. Mirroring the work in Schumakovitche’s paper, we start by showing that sk + ks = 1 + us. Let
v = ȧ⊗ w be a state in C•,•F2[u], where the dot marks the specially marked cycle. We break into 2 cases.

(1) a = 1. Then

sk(v) = s(ẋ⊗ w) = u1̇⊗ s(w) + ẋ⊗ s(w) + 1̇⊗ w
and

ks(1̇⊗ w) = k(1̇⊗ s(w)) = ẋ⊗ s(w)

. Therefore,

(sk + ks)(v) = 1⊗ w + u1⊗ s(w)

= (1 + us)(v)

(2) a = x. The

sk(v) = s(uẋ⊗ w) = u21̇⊗ s(w) + uẋ⊗ s(w) + u1̇⊗ w
and

ks(x⊗ w) = k(x⊗ s(w) + u1⊗ s(w) + s(w) + 1⊗ w)

= uẋ⊗ s(w) + uẋ⊗ s(w) + x⊗ w

Bringing

(sk + ks)(v) = u21̇⊗ s(w) + uẋ⊗ s(w) + u1̇⊗ w + x⊗ w
= (1 + us)(v)
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= + +

Figure 5. The 4− tu relationship over F2

Now to show that s∗ is acyclic on BN•,•. As s2 = 0, we need only show that the kernel of s is contained in the
image of s to have exactness. Suppose s∗([v]) = 0. Then we have that s∗k∗(v) = (1 +u∗s∗+k∗s∗)([v]) = [v].
Therefore, s is exact. �

Corollary 4.7. Suppose that BN•,• converges on the second page of Turner’s spectral sequence. Then the
map k∗ is acyclic on the torsion band of homology.

Proof. There is some difficulty here as k2 6= 0. However, (k∗)2 = u∗k∗ and if BN•,• converges on the second
page, u∗ is trivial on homology. Therefore, (k∗)2 = 0.
We need now only show that if k∗([v]) = [0], then there exists [w] such that k([w]) = [v]. By corollary
2.6 multiplication by u is trivial on the band of torsion in F2 thin links, so we have that k∗s∗([v]) =
(1 + u∗s∗ + k∗s∗) = [v] �

This corollary brings up an interesting point. In regular F2 homology, we had that the both k and s were
exact maps. Now, the exactness of k depends on the u torsion of the complex. Without the exactness of
k, analyzing the reduced Bar-Natan theory is difficult. We therefore take a look at the image of s instead,
which forms a subcomplex of BN•,•. We will call this object the top reduced Bar-Natan theory, written

as C̃•,•F2[u]

T

.

5. Cobordism representation of Schumakovitch’s Map

Can we construct the s and t maps given by Schumakovitch for arbitrary homology theories? We want
to find under what conditions we can have an exact differential between the full homology theory and the
reduced homology theory. To do this we need to look at Bar Natan’s original description of the F2[u] theory.
In his paper on Cobordisms [Bar04], Bar-Natan constructed the F2[u] theory as a purely cobordism-based
theory. Recall, the category Cob3l is the category of 1 + 1 cobordisms, with the additional relationships of
S, T , and 4 − tu. From here, Bar-Natan considers a different category, BN . We characterize this category
by giving it’s set of objects and morphisms.

• An object in BN is the set of morphisms that start at a single circle and end at some set of circles,
Lα ∈ Ob(Cob3l). The objects are written as HomCob3l(◦, Lα). Remember we take the cobordisms
and have modded out by the relationships l = {S, T, 4 − tu}. We further tensor by F2, thereby
removing all 2 torsion from out theory. The 4 − tu relationship, along with the lack of 2 torsions,
means that there is a canonical representation for a cobordism under the relationship l. The canoni-
cal form of a cobordism is where every connected component save one is a disk. The last component
is a punctured n-torus, where one puncture corresponds to the source of the cobordism. We can
now name every cobordism. We write a 1 for every boundary the belongs to a disk, and an x for
every boundary that belongs to the special component. Finally, we write un to denote the number
of ”donut holes” in the special component. In such as fashion, we can derive a “name” for every
cobordism. See the above figure for an example.

• For morphisms, BN uses the morphisms from Cob3L, where the action between HomCob3(◦, Lα) and
HomCob3(◦, Lβ) is given by the pullback.

This theory gives the same homology as the F2[u] theory. Let F be the functor that takes an object
HomCob3l(◦, Lα) and in this theory, we can provide a natural rendition of Schumakovitch’s s map.
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= + +

Figure 6. Reduction of a cobordism to the standard form

1 1 x

Figure 7. The cobordism representing u1⊗ 1⊗ x

Theorem 5.1. Consider the function s′ taking a cobordism C : ◦ → Lα (in the canonical form) to the
new cobordism where we have inserted a cut close to the domain of the cobordism. This map is the same as
Schumakovitch’s differential s.

Proof. We show that this function follows the recursive definition for Schumakovitch’s map. We first choose
a representative for the cobordism that is in the canonical form. We now analyze some subcases:

• The special component has only one boundary component (and therefore has labeling 1⊗1⊗ . . .⊗1.)
In this case, cutting C anywhere near the domain creates (up to the relationships in l) the cobordism
C ∪ S2, the two sphere. However, the two sphere is 0 under the relationship S, so s′(C) = 0

• The special component has at least two boundary components. Then the cutting s′ creates a cobor-
dism with special component with boundary the domain, unchanged punctured spheres, and lower
component with is a punctured sphere whose boundary completely lies in the codomain of the cobor-
dism.

In the first case, we have a cobordism that agrees with Schumakovitch’s map. It therefore suffices to check
the second case. Use the 4− tu relationship on a handle in the lower component, and the special component.
This sum of cobordisms that results corresponds to the same sum of states given by Schumakovitch’s map.
See Figure 8. �

The cobordism description of the s map makes it quite clear why s is a map of the chain complexes:
commutativity with the differential is obvious in the cobordism description, as the neck cutting relationship
occurs far away from where morphisms are being composed.

Corollary 5.2. s is a differential on the F2[u] complex

Proof. In the cobordism theory, s2 is applying two cuts near the special top component. However, after the
application of a single cut, the top component is a disk. The second cut “lops” of a sphere from this specially
marked component. According to the relationship S, this corresponds to multiplication by 0. Therefore,
s2 = 0 �

There is a similar description of Khovanov’s k map using cobordisms. Consider the map k′ that connects
a marked boundary of the cobordism to the special component with a handle. It is easy to verify that this
map is the same as the map on F2[u] modules, k.
It should be noted that if we take the relationship that T = 0 in the cobordism theory, we get the original F2

homology. In this context, the cutting map given by s′ and the handle-adding map given by k′ are exactly
the same as the ones used by Schumakovitch to prove the exact sequence on F2 homology. Exactness of the
map k′ follows as the addition of two handles to a surface corresponds to adding a donut hole, and we have
that T = 0.
Finally, if we take the relationship T = 1 in the cobordism theory, we get the filtered F2 homology, and a
new type of Schumakovitch map.
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x x
7→ =

x 1

+
1 x

+
1 1

Figure 8. The cutting of a cobordism yields Schumakovitch’s map

From here, we see the exact requirements that a homology theory needs in order to have an exact differential
between the full and reduced theories, and why the F2[u] theory does not posses such a differential. It is
interesting to note that the differential s is always exact on homology.

6. Relationships between Reduced, Filtered and F2[u] theories

In this section, we give equivelence required to reconstruct the F2 spectral sequence from just the module
theory. To avoid mucking around with indices, we will instead show that the spectral sequence for BC•,•∞
contains all the information of BN•,•, and vice versa. We will then use a map between BC•,•∞ and C•,•F2

to
determine the information on the filtered theory.

Lemma 6.1 (Turner [Tur04]). There exists a natural projection π from BC•,•∞ to Turner’s filtered theory.

The u degree will give us information on how to construct the higher differentials. In return, the filtered
theory will give us some information on the u non-homogenous generators of the F2[u] theory. Recall that
Bar-Natan theory, while quantum graded, is only u filtered.

6.1. Filtered Width. Suppose that there is an element v̄ in the Bar-Natan homology that does not have
a representative in C•,•F2[u] which is u homogeneous. Then let v be an representative of that class in C•,•F2[u].

We have that v can be written as a sum of elements with homogeneous u degree because as a module C•,•F2[u]

splits across u degree. Write v =
∑
i0≤i≤if vi, where each vi is u-homogeneous of degree i. We call |if − i0|

the filtered width of v and write is ω(v)

Definition 6.1. We call v primitive if there does not exist w, t such that [w] + [t] = [v] and ω(w), ω(t) <
ω(v).

Lemma 6.2. If v is primitive, then no vj = 0.

Proof. Suppose that there was some vj such that vj = 0. Then we could write v =
∑
i0≤a<j va+

∑
j<b<if

vb.

Let w =
∑
i0≤a<j va, and t =

∑
j<b<if

vb. Then the maximal u degree of w and the minimal u degree of t

differ by 2. In particular, we have that the maximal u degree of d(w) and minimal u degree of d(t) differ
by 1. So both w and t lie in the kernel of d, and therefore represent an element in the homology. But this
contradicts the primitiveness of w. �

Lemma 6.3. Let v be primitive. Then we have that φ(vj) 6= 0 for all j 6= i0, and we have that d′(vj) 6= 0
for all j 6= if .

Proof. If d′(vj) = 0 for some j, then we have that φ(vj−1) = 0 as d′(vi) + φ(vi−1) = 0. We now split
v =

∑
i0≤a<i va +

∑
j≤b<if vb. Let w =

∑
i0≤a<j va, and t =

∑
j≤b<if vb. Then d(a) = d(b) = 0. But this

again contradicts the primitivity of w. �

Theorem 6.4. If v is primitive with filtered width greater than 0, then [uv] 6= [0] on homology.

Proof. We have that d(uv) = ud(v) = 0, so it remains to show that uv is not in the image of d. Suppose
there is w such that d(w) = uv. We write w =

∑
k0≤k≤k. Since uv is in the image of k, we have for every vi,

that uvi = d′(wi+1) +φ(wi). Look at vi0 . We know that φ(uvi0) 6= 0 by the previous lemma. As φ is a chain
map, this means that there is no wi−1 such that φ(wi) = uvi0 . This means that w is completely supported
in u degrees greater or equal to i0 + 1. However, this means that the u degree of every wk is greater that
1. Let u−1w be the element that maps to w under multiplication under u. Then d(u−1w) = v, so [v] = [0].
This contradicts the filtered width of v. �

Corollary 6.5. The dimension of the space spanned by elements of filtered width greater than 0 in BN•,j

is no more than 2l, where l is the number of link components.
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Proof. As elements with filtered width greater than 0 are u torsion free, we can see by the large quantum
degree theory that the number of filtered elements must be 2l per quantum degree. �

6.2. u-torsion and Higher Differentials. In this section, we show how knowing the u torsion of an
element in the homology gives information on higher differentials in the filtered theory of BN•,∞. In fact,
we would like to show that the data from these two theories are equivalent.

Theorem 6.6. The spectral sequence convereging to BN•,∞ and the u torsion of elements in BN•,• deter-
mine eachother completely.

We’ve seen before that the convergence rate of Turner’s spectral sequence provides an upper bound for
the u torsion of the band of homology. We now want to show that the u torsion of an element determines
which pages it shows up on in Turner’s spectral sequence for filtered F2 theory.
We first show that high u torsion implies the existence of a high u degree differential in the spectral sequence.
When we write v has u degree 1, we mean to pick an element v in the band of u torsion.

Lemma 6.7. Suppose that v is of u degree 0 and [v] has u torsion n in the homology. Then π(v) is on the
n+ 1 page of Turner’s spectral sequence, and is not on the n+ 2 page of Turner’s spectral sequence.

Proof. Let d(w) = unv, and let unv live in BN•,j . Then write w =
∑∞
l=0 wl, where wl is u-homogenous

of degree l. We have that w0 6= 0, as if w had no support in u degree 0, the torsion of v would be n − 1.
We claim that d′(wk) 6= 0 for all k 6= 0 and φ(wk) 6= 0 for any k < n. Suppose that there existed wl such
that d′(wk) = 0. Then consider the element

∑
l≥k wl. We have that d′(

∑
l≥k wl) = unv. However, this

contradicts that w0 cannot be 0 for an element that cancels out unv.
Let us look at what such a cancellation appears to be in the spectral sequence. On the E1 page, we see only
unv and w0 (as every other wi is not in the kernel of d′). These two terms must be canceled out, but the
only induced differential that could cancel them out would have to be of degree n. Therefore, we have this
differential appears on the En+1 page, which implies that unv appears on n+1 page of the spectral theorem,
but not on the n+ 2 page.
We now want to show that this pairing data carries over to BN bullet,∞. However, this follows from the fact
that w is the element of minimal filtered width that cancels unv, so ukw is the element of minimal filtered
width that cancels out un+kv. �

Obviously, we would like the converse statement to also be true, and it is.

Lemma 6.8. Let v and w be u degree 0, and suppose that un+kv is cancelled out by ukw on the n+ 1 page
of the spectral sequence. Then v is u torsion of degree n.

Proof. It is clear that w can be no more than un torsion, because ukw = v. Suppose that v had u torsion
less than n. Then by the above lemma, it would be cancelled out in the spectral sequence before the n+ 1
page. This is a contradiction. �

From here, we have that the filtered theory and the F2[u] theory are equivalent. We have a dictionary
between these two theories:

• u torsion corresponds to the “width” of the pairing in the filtered theory.
• Non-homogenous u degree of generator corresponds to no being paired in the spectral sequence.

7. Where to look from here

Some thoughts on where to look to develop the theory further.

• We had that the map k∗ : BN•,• → BN•,• was not an exact map– not even a differential! Can

knowing just the quantum degrees of BN•,• and the reduced theory B̃N•,• give additional structure
on the theory besides the rate of convergence?

• Even better, does knowing the reduced F2 and full F2 theory give additional information on pairings
of elements in the filtered F2 theory?

• We described Schumakovitch’s s map, via a cutting relationship on cobordisms. Does this technique
extended to other tautological functors given by Bar-Natan in his paper?

• Does the presence of an additional spectral sequence to compute BN•,• significantly improve com-
putation time?
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