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Abstract

These are some notes for Berkeley’s Mirror Symmetry Seminar 2017. In this survey, we outline
the relation between Homological Mirror Symmetry to SYZ mirror Symmetry via the Family Floer
theory. We also provide background sketches information on HMS, SYZ, and rigid analytic geometry.
Primary sources for these notes include Abouzaid’s papers on SYZ and Family Floer Theory [Abo14a]
and [Abo14b], Hitchin’s notes on the geometry of SYZ fibrations [Hit01], and [Con08]
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1 SYZ and HMS

The Strominger-Yau-Zaslow conjecture ([SYZ96]) gives us a geometric intuition for mirror symmetry. It
conjectures that mirror symmetry is a relation of two different kinds of calibrated geometry, which can be
interchanged by implementing a Fourier-transform on a family of special Lagrangian tori [LYZ00]. The SYZ
formulation of mirror symmetry ties together geometry and topology in a way that explains predictions such
as the interchange of Hodge numbers [Gro01] and forms the basis of the Gross-Seibert program giving and
algebraic-geometric machinery for classical mirror symmetry [GS03] The goal of this exposition is to outline
the first steps of the Family-Floer program which shows that the SYZ correspondence can be used to produce
homological mirrors.

1.1 SYZ: Some History

We start with some very geometric observations. Let X be a Calabi-Yau manifold, with holomorphic volume
form Ω = ReΩ + iImΩ, and symplectic structure ω. These two forms equip X with 2 kinds of geometries
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(complex and symplectic) which we can study. Both complex geometry and symplectic geometry pick out
preferred submanifolds of X, namely the complex submanifolds and Lagrangian submanifolds of X. At first
glance, these geometries are surprisingly different: for instance, Lagrangian submanifolds are much more
flexible than complex submanifolds; given any Lagrangian L, one can produce infinitely many different La-
grangians by taking Hamiltonian isotopies of L.
Due to the overabundance of Lagrangians, it makes sense to look at Lagrangians up to equivalence by Hamil-
tonian isotopy. In a Calabi-Yau manifold, we have a way to pick a preferred representative of a Hamiltonian
isotopy class [L] by picking the Lagrangian on which ReΩ|L = 0. These are called the special Lagrangian
submanifolds and they (at least locally) uniquely specify a Hamiltonian isotopy class of Lagrangians. A the-
orem of McLean [McL96] describes the deformation theory of special Lagrangians in terms of the H1(L,R),
the space of real harmonic 1-forms on L. This viewpoint of symplectic geometry draws many ideas from cal-
ibrated geometry, which concerns itself with volume minimizing submanifolds– here, the special Lagrangian
is a volume minimizing representative of its Hamiltonian isotopy class.
The appearance of calibrated geometry, in retrospect, should be expected as a Calabi-Yau has 2 kinds of
calibrated geometry: that coming from ReΩ, a non-vanishing closed n-form, and the geometry of ωk, a non-
vanishing closed 2k form. Where ReΩ selects the calibrated special Lagrangian submanifolds, the calibrated
geometry of ωk exactly corresponds to the geometry of complex k-submanifolds. A particularly geometric
interpretation of Mirror Symmetry posits that mirror spaces are those which interchange these two cali-
brated geometries. For instance, if X is a hyperkahler manifold of real dimension 4, the interchange between
complex and symplectic geometry by hyperkahler twist exactly relates the special Lagrangian and complex
submanifolds. This kind of intuition is true in the case of K3 surfaces, which are slef mirror (although, not
simply by hyperkahler twist.)
This is where we begin our story with SYZ. Suppose that F ⊂ X is a special Lagrangian torus. By the
result of McLean, nearby special Lagrangian tori can be obtained identifying a neighborhood of F in X with
T ∗F , and looking at the section of a harmonic 1-form. As harmonic 1-forms are non-vanishing on the torus,
each q ∈ H1(F,R), gives us a new special lagrangian torus Fq disjoint from F . This gives us a map in a
neighborhood of the origin

H1(F,R)× F ↪→ X.

As the dimension dimH1(F,R) = n, this is a diffeomorphism onto its image. We conclude that each
Lagrangian torus gives us a small chart of a torus fibration on X.
The SY Z conjecture then posits that we can extend this local fibration to a global fibration of X by these
Lagrangian tori. This assumption cannot be true on the nose for topological reasons 1 however, we could
hope that it admits a fibration with some additional singular fibers.

Assumption 1.1.1. There exists an almost toric special Lagrangian fibration of X,

Fq X

Q

called a SYZ-fibration of X.

For example, the product tori in a Toric Variety are Lagrangian, and are non-degenerate away from a
codimension 2 manifold. One of the primary difficulties of extending SYZ mirror symmetry to is understand-
ing how to incorporate degenerate tori into mirror symmetry constructions. For example, [Joy00] says that
we should only expect to have a fibration away from a codimension 1 thickening of a codimension 2 critical
locus.
If we take the existence of a SYZ fibration as a given, we can use the geometry of the fibration to construct
a mirror for X. To each torus X we can associate a dual torus F̌ which is given by the moduli space of flat

1For instance, this would imply that H1(X) 6= 0
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U(1) line bundles on T . This gives us a dual fibration over the same base, and we define X̌ to be the total
space of this fibration,

Fq X X̌ F̌q

Q

.

This gives us the following conjecture / definition for mirror symmetry.

Conjecture 1.1.2. The spaces X and X̌ are SYZ mirror.

One approach to Mirror symmetry is now to understanding how SY Z-mirrors exhibit other predictions
from mirror symmetry.

• McLean showed that there is a way interchange the complex structure on X with the symplectic
structure on X̌ and vice-versa.

• The namesake of mirror symmetry is the interchange of Hodge numbers between X and its mirror
space X̌. By a careful analysis of the Serre spectral sequence for computing homology (along with an
adaptation to setting of almost fibrations,) Gross [Gro01] showed that if X and X̌ are 3-folds, we get
the desired reflection of the Hodge diamond.

• By taking toric degenerations Gross and Seibert were able to relate open Gromov Witten invariants of
X to period integrals on X̌.

• Perhaps most importantly, SYZ gives us a way to produce candidate mirror spaces to test our pre-
dictions on. For instance, mirror symmetry for Toric Fanos, hypersurfaces, and more have all been
constructed using SYZ fibrations, and verified with computation.

The main goal of the Family Floer theory program is to show that SYZ mirrors are homological mirrors in
the sense of [Kon94].

1.2 Homological Mirror Symmetry

Some Information about homological mirror symmetry should go here!

1.3 Outline of this exposition

The goal of this exposition is to outline some of the results and techniques of family floer theory, which
provides a path to proving the following statement.

Conjecture 1.3.1. Let X, X̌ be spaces which are SY Z mirror. Then X and X̌ are homologically mirror.

In this paper, we will only sketch the existence of a functor

F : Fuk(X)→ Coh[α](X̌),

and even this sketch will take a substantial amount of effort.

• In Section 2, we will do a second pass on the topology of SYZ fibrations, focusing on the affine
structure on Q, and the presence of a B-field gerbe that comes into play when trying to dualize the
SYZ construction.

• In Section 3, we give a primer on rigid-analytic geometry. As end-users of this theory, we will only
look at the shortcomings of using the näive topology on the mirror space X̌, and the route that rigid-
analytic geometry takes to correct these difficulties. From this discussion, we’ll see what kind of data
we need to equip X̌ with in order to have a meaningful theory of coherent sheaves on it.
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• In 4, we will use Floer theory to build local patches of sheaves on X̌, and build local patches of the
family floer functor. We will also show that the Local patches of sheaves that we build are admissible
with respect to the analytic structure on X̌.

• Finally, in 4.2, we show that our local patches glue together with the appropriate selection of gluing
data.

2 A second look at SYZ topology

We will now take a more detailed examination of the geometry and topology that X inherits from an SYZ
fibration. Since deformations of special Lagrangians are given by harmonic forms, we have an identification

TqQ = H1(Fq,R), T ∗qQ = H1(Fq,R).

Inside these homology group there is a lattice of integral homology classes, which gives us a bundle of lattices

TZQ ⊂ TQ, T ∗ZQ ⊂ T ∗Q.

These identifications give us for each Fq a preferred chart of Q, and since the transition maps between these
charts will preserve integral cohomology classes, the space Q can be given an integral affine structure. The
fiber can be recovered by taking the quotient

Fq = H1(Fq,R)/H1(Fq,Z).

Note that while a choice of lattice TZQ ⊂ TQ induces an affine structure on Q, an affine structure does not
recover this lattice (and therefore X cannot be recovered from only the affine base Q.) For example, X̌ and
X are fibrations over the same affine base, but are not expected in general to be the same manifold.
The goal of this section is to motivate how the toric bundles X over affine Q can be specified by giving a
Cech 2-cocyle in the sheaf of integral affine functions. This classification was originally understood using
obstruction theory, and outlined in [GS03] We’ll motivate the appearance of this class by appealing to mirror
symmetry and the SY Z mirror construction, following [Hit01].

Reversing the SYZ Construction

As we’ve outline before, a Lagrangian torus fibration F → X � Q gives us a dual torus fibration F̌ → X̌ �
Q, where F̌ is the space of flat unitary connections on F . Using the bundles constructed before, one can
also define the SY Z mirror as

X̌ = TZQ⊗Z U(1).

If this a non-trivial bundle, there is no reason for us to expect the existence of a section (see the example
below.) This means that X̌ has a very unusual torus fibration, as it admits a section š : Q ↪→ X̌ by taking
š(q) ∈ F̌ to be the trivial connection on F . 2 As a result, our SYZ mirror construction does not dualize in

the sense that ˇ̌X will not wind up being our original space X. This motivates the following question:

Question 2.0.1. What is the additional data (X,B) and (X̌, B̌) that we need to make SYZ dual spaces
mutually mirror to each other?

2In light of homological mirror symmetry, we should completely have the expectation that X̌ admits a Lagrangian section,
as the B-model on X has a structure sheaf which should be mirror to this section.
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A Concrete Example: The Kodaira-Thurston Surface

To get a concrete example in mind, let’s look at an example, due to Thurston [Thu76] with SYZ fibration
considerations [AAOK]. Consider R4 with the standard symplectic form dx1∧dx2 +dx3∧dx4. We now look
at two symplectomorphisms of the space R4

φ : (x1, x2, x3, x4) 7→(x1 + 1, x2, x3, x4 + x3)

ψijk : (x1, x2, x3, x4) 7→(x1, x2 + i, x3 + j, x4 + k)

where i, j, k ∈ Z. Let Γ be the group of symplectomorphisms generated by these two, and consider X = R4/Γ.
There are two fibrations of R4 which descend to fibrations of X,

• The easier fibration involves projecting to coordinates x2 and x3. To visualize the construction: First
quotient out by ψijk. This is quotienting R4 by the subgroup {0} × Z3, so the resulting quotient is
R4/〈ψijk〉 = R× T 3.

We now quotient out by the action of φ, which acts on the cylinder Rx1
× S1

x4
by quotienting by

(x1, x4) 7→ (x1 + 1, x4 + x3) (So the cylinder is quotiented by a skew twist.) The base of this fibration
is a torus, and admits a section given by (0, x2, x3, 0).
However, the dual-torus fibration to this is non-trivial, which is attributed to the monodromy of this
fibration being non-trivial on homology (travelling in the x3 direction corresponds to a Dehn twist
on the fiber.) Even so, both X and X̌ have SYZ fibrations which admit Lagrangian sections. The
Kodaira-Thurston surface has been proven to be weakly self-mirror in the sense of Merkolov. [Mer00].

• The more tricky fibration to view is given by projection to the x1 and x3 coordinates.
The base of the fibration is a torus, given by (x1, x3) 7→ (x1 + 1, x3) and (x1, x3) 7→ (x1, x3 + 1).

The torus fibers T 2 are then identified by (x2, x4) 7→ (x2, x4 + x3). This give us a non-trivial fibration
which does not admit a topological section. One can see the topology of this fibration in that going
around the x1 direction of the base gives me a rotation of x3 in the x4 component of the fiber. However,
on the homology of the torus, this identification is trivial, so the bundle of local systems on these tori
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is trivial.
As a result, the mirror space constructed via this SYZ fibration is X̌ = T 2 × T 2. However, T 2 × T 2

equipped with the standard SYZ fibration does not yield X again. The expectation is that X is not
homologically mirror to X̌; instead, one needs to equip this space with additional data.

Problematically, a homological mirror symmetry construction using SY Z fibrations should predict that these
two different mirrors have the same B-model. The work around to this is to expand our definition of B-model
to include deformations by a B-field, which will modify the B-model of X̌, and also provide us an additional
geometric twist to the SYZ mirror construction.

Gerbes

The data of B comes in the form of a gerbe.3 The full machinery of gerbes is probably too much to introduce
in this talk. For us, a gerbe will determined by a S1-valued Cech 3-cocycle4. Geometrically the information
of a gerbe can be fit in a hierarchy with S1-valued functions and unitary line bundles. Here is a chart on
what geometric parallels we expect to exist for gerbes.

Functions f Line Bundles L Gerbes G
Transition Data fα : Uα → S1 gαβ : Uα ∩ Uβ → S1 hαβγ : Uα ∩ Uβ ∩ Uγ → S1

Compatibility None! gαβ = g−1
βα hαβγ = g−1

βαγ

Cocycle Condition fαf
−1
β = 1 gαβgβγgγα = 1 hαβγh

−1
βγδhγδαh

−1
δαβ = 1

Difference of Trivializations Functions Line Bundles
“Characteristic Class” H1(F,Z) H2(F,Z) H3(F,Z)

Holonomy (if flat) along Points Curves Surfaces

Notice that line bundles make two appearances in this hierarchy: either as geometric objects, or as the
transition data of Gerbe trivializations. When line bundles are considered as geometric objects on their own,
they form a group under tensor product, and come with a canonical identity object (the trivial line bundle).
However, the set of trivializations of a Gerbe does not have a canonical identity, and forms a torsor. This
means that once we fix a trivialization of a gerbe G, the space of trivializations of G is identified with the
space of line bundles; however, there is no reason to expect a canonical trivialization of a gerbe to exist.
This gives us the following twisted SYZ construction.

Definition 2.0.2. Let B be a flat Gerbe on X. Suppose that map H2(X,R) → H2(Fq,R) is trivial. Then
the restriction of B|Fq

is a flat gerbe with trivial holonomy. Let F̌q,B be the dual torus of flat trivializations

of B|Fq
. We define the B twisted SY Z mirror to be the total space of the dual fibration given by F̌q,B → Q

Since the gerbe B is flat, we get a holonomy map from C2(X,U(1))→ R, and therefore to each B we get
an associated holonomy class [b] ∈ H2(X,U(1)). Flat gerbes are determined by their holonomy, so specifying
a class in H2(X,U(1)) is the same a specifying a flat gerbe.
This class which naturally emerges in the gerbe story also makes an appearance from the topology of the
SYZ fibration. Let Pi, Pj be two open sets, where we’ve built trivializations of T ∗ZQ. The difference between
these two trivializations is an exact differential form dfij . Since the transitions are affine, this differential
form will have integral coordinate values in each trivialization. Let A be the sheaf of functions with affine
differential; then given trivializations of T ∗ZQ over Pi, Pj and Pk, we get a Cech 2-cycle

αijk = fij − fjk + fik ∈ Č2(X,A).

3Gerbe (French): A spray, or sheaf
4Technical definition: A Gerbe is a stack of groupoids, which is locally non-empty and transitive. One way to relate this

to our geometric intuition is that the sections over each open set consist of the category principle S1 bundles, with morphisms
given by isomorphism. In this language, it becomes clear the difference between two trivializations is a line bundle.
One can also fit this in our hierarchy, as a line bundle is a sheaf valued in the ring of functions.
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This class [α], along with the affine structure of Q, specifies the fibration X → Q up to fiberwise symplec-
tomorphism.5

Let X̌ be the standard SY Z mirror built from looking at the moduli of flat line bundles of F . Given an
affine function f : P → R, we can associate a function exp(f) : X̌P → U(1) whose value at a point in the
fiber (q, θ) is given by

exp(f)(q, θ) := exp(i〈df, θ〉)

This exponential map extends to a map of homology groups

exp : H2(Q,A)→ H2(X̌, U(1)).

If we take the class [α] given to us by the SY Z fibration, our exponential map gives us a class [exp(αijk)] ∈
H2(X̌, U(1) determining a flat gerbe Bα. So, the SY Z construction not only builds a mirror space X̌, but
also canonically equips that mirror space with a flat gerbe. This constructed gerbe answers our question on
how to dualize the SYZ construction.

Claim 2.0.3. Let B0 be the trivial gerbe on X. Then (X,B0) and (X̌,Bα) are mutually twisted SYZ mirror
to each other.

Having understood the necessity of incorporating gerbes into discussions of SYZ fibrations, let’s return to
our concrete example, and look at implications of the presence of this gerbe to mirror symmetry predictions.

B -field

In general, Mirror symmetry is suppose to match the symplectic moduli of X with the complex moduli of X̌
and vice-versa. Problematically, the symplectic moduli of a space is a real space, while the complex moduli
is a complex space. A solution to this is to incorporate the additional data of a B-field valued in H2(X,S1),
which complexifies the Kahler moduli space. The interpretation via gerbes gives a concrete meaning to the
presence of this B-field, which tells us how which SYZ mirror we should take when performing homological
mirror symmetry. The match between symplectic moduli of X and complex moduli of X̌ can be interpreted
via deformations of categories,

H2(X)×H2(X,S1)→ Deformations of ω → HH•(Fuk(X)) ∼ Deformations of Fuk(X̌)

H1,1(X)→ Deformations of J → HH•(DbCoh(X))

Here, the presence of a gerbe corresponds to a deformation of the symplectic category– however....

Twisted Sheaves

The last section of our discussion looks at how the data of this B-field influences the A-model. Let’s expand
a little bit on this idea of deformation. By [HKR09],the Hochschild cohomology of X̌ giving the deformation
theory of the DG category of coherent sheaves can be identified with polyvector fields on X, giving

HH2(X̌) = H0(X̌,Λ2TX̌)⊕H1(X̌, TX̌)⊕H2(X̌,OX̌)

These three components of homology can be understood as 3 different kinds of deformations

• H0(X̌,Λ2TX̌) corresponds to non-commutative deformations.

• H1(X,TX̌) corresponds to deformations of complex structure. After the appropriate massaging, this is
re-identified with H1,1(X), corresponding to the types of deformations that form the core of classical
mirror symmetry.

5Notice, if α = 0, then the space X is expected to be self-mirror. Examples include X = (C∗)n, or X = T 2n.
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• H2(X,OX̌) correspond to gerby deformations, where we loosen the cocycle condition on sheaves to the
twisted cocyle condition that transition functions fij for a sheaf trivialization satisfies the condition

fijfjkfik = gijk id

instead. From this discussion, is evident that twisted sheaves form a DG category which is a possible
receptacle for Homological Mirror Symmetry.

Lagrangian Sections

These two considerations directly relate to the existence (or non-existence) of a Lagrangian section of the
fibration F ↪→ X � Q. The obstruction to constructing such a section turns out to give a codimension 2
obstruction in H2(Q,A), which is exactly this class α. The lack of a Lagrangian section means that we have
no Lagrangian in Fuk(X) which represents the structure sheaf on X̌.
A work around to this is to only locally construct sections which are suppose to represent the structure sheaf;
the failure of the cocycle condition to hold will end up factoring as additional data which we must record on
X̌, in the form of a gerbe Bα.
In summary, we see the presence of gerbes in several components of our story. We started by introducing
gerbes to balance out the SYZ construction, but this gerbe appears all over the place once we elevate it to
an important position in the A and B model.

3 The Topology of the SYZ mirror

Homological mirror symmetry predicts a match between the Fukaya category of X and the derived category
of coherent sheaves of the mirror space X̌. If we use the version of the SYZ construction above, our spaces
X and X̌ will never be homologically mirror, as the Fukaya category is defined with Novikov coefficients.
We therefore modify the SYZ construction to build from an Lagrangian torus fibration on X a rigid analytic
mirror X̌Λ.

3.1 Understanding SYZ with Novikov Coefficients

While the tori of an SYZ fibration have wonderful geometry, they are necessarily non-exact objects of the
Fukaya category, and as a result any Floer theory that we attempt to define with these Lagrangians will
necessarily be Novikov valued. Recall, the Novikov field is the set of formal sums with exponents increasing
to infinity:

Λ :=
{∑

ciT
λi | ci ∈ C, λi ∈ R, lim

i→∞
λi =∞

}
This field comes with a non-archimedian valuation

val : Λ→R∑
{λ1<λ2<··· | ti∈R}

ciT
λi 7→λ1

The unitary elements of Λ will be those with 0-valuation. The objects of the Fukaya category are Lagrangians
L equipped with a Λ-unitary local system; by representing the monodromy of this local system with b ∈
H1(L,UΛ), we can represent the objects of the Fukaya category as pairs (L, b)6.
When we have an SYZ fibration, we now have a new candidate for what the mirror space should be: the
moduli space of pairs (Fq, b)– as opposed to the moduli space of line bundles on Fq. By propegating
this modification through the SYZ mirror construction, we build a SYZ mirror which is no-longer a complex

6A possible expansion of this story is to let b be the data of a bounding cochain on L. In the case where L bounds no
holomorphic disks, this is exactly the data of a unitary local system.
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manifold. Here is a dictionary between the SYZ construction with C coefficients, and the Λ-SYZ construction
we will undertake:

C-SYZ Λ-SYZ
(Fq,L) (Fq, b)

F̌q = TZ
q Q⊗ U(1) F̌qΛ = TZ

q Q⊗ UΛ

X̌ := TZQ⊗ U X̌Λ := TZQ⊗ UΛ

log(| · |) : C∗ → R val : Λ→ R
π : X̌ → Q val : X̌Λ → Q

[α] ∈ H2(X̌, U(1)) [α] ∈ H2(X̌, UΛ)

Let’s re-examine the local geometry of Lagrangian torus fibration.

The neighborhood of b0 in B is canonically isomorphic to a neighborhood of ) in H1(F0,R) ' Rn. We have
that Fb ⊂Weinstein neighborhood of F , so that Fb corresponds to a graph of a closed 1-form on F0, and we
can take the associated cohomology class.
More explicitly, if we pick a basis γ1, γn of H1(F0), we can build cylinders Γi between the fibers corresponding
to the trace of the γi. We can then define local coordinates by taking

p(b) :=

(∫
Γ1

ω, . . . , ω

∫
Γn

ω

)

As we move around the torus fibration, we may have monodromy on H1(F0) which gives us an integer affine
structure on B.
Recall that Λ = {

∑
aiT

λi | λi ∈ R, λi →∞} has a valuation given by

ν

(∑
i

ΛaiT
λi

)
= min{λi | ai 6= 0} ∈ R

and we have unitary elements given by UΛ = ν−1(0) ⊂ Λ∗.
Given a chart for B near b0, and given Fb, we get a rank 1 local system ξ on Fb with holξ ∈ H1(Fb, UΛ). We
want to associate to this a point in the candidate piece of mirror.
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Associate to z(Fb, ξ) ∈ H1(Fb0 ,Λ
∗) ' (Λ∗)n with ν(z) = p(b).

Concretely, fix z = (z1, . . . , zn) ∈ (Λ∗)n, we have that zi = Tω(Γi) holξ(γi). We now take

YP :=
⊔
b

H1(Fb, UΛ) ' ν−1(P ) ⊂ (Λ∗)n.

Now this thing has an analytic structure. We now glue these together along the affine structure of B.

• Changing b0 corresponds to rescaling the coordinates by T

• Changing the basis H1 corresponds to a monomial transformation.

This viewpoint encourages thinking of Fp as something over Fq with a non-unitary local system.

3.2 The Topology

Our first step will be understanding how to equip X̌Λ with a topology so that the geometry of Novikov
valuation and convergence is reflected in the map val : X̌ → Q. After we have built this topology7 we will
have to understand what coherent sheaves are on this, and see how the class [α] from our previous discussion
carries over to give us a rigid analytic gerbe on X̌. Ultimately, our intuition for the topology of X̌ will be
informed by our expectations on how to compare the Floer homology of nearby fibers.
Before working on the topology of X̌, it is worth understanding how to give topology to some simpler spaces
over Λ. Locally, one might expect the mirror X̌ to be constructed out of charts that look like the Novikov
ring in k-variables. The difficulty of working with these spaces is that their standard topologies contain too
many open sets, and therefore disconnected; secondly, the presence of so many open sets makes things that
we would expect to be quasicompact are no longer compact. As a result, the classical topology on these
spaces doesn’t have a meaningful sheaf theory. Tate’s solution to this problem is to judiciously remove open
sets and covering maps until the topology was fine enough to do sheaf theory, but still coarse enough to not
dissolve into a mess of disconnected sets.

The way that these open sets are selected is informed from trying to treat formal power series as the
basis for covers in the same way that algebraic geometry uses polynomial rings for covers.

Definition 3.2.1. Let Λ be a field with non-archimedian valuation val : Λ∗ → R. Give Λ the norm |·| : Λ→ R
given by |f | = exp(− val(f)).
Define the valuation ring to be the ring

Λ≤1 = {z ∈ Λ | |z| ≤ 1}

and the associated residue field UΛ = Λ≤1/m.

The key insight of rigid analytic geometry is that polynomial rings should not be the proper tool to build
open charts in non-archmedian geometry, but rather small balls that look like the valuation ring.

Definition 3.2.2. The n-variable Tate algebra over Λ is

Tn := {
∑

fAz
A | val(fA)→∞ as |A| → ∞}

The sup-norm on Tn is

‖
∑

fAz
A‖ := max

A
|fA| ≥ 0.

The sup norm gives Tn topology of a Banach space, and it is multiplicative. The points of this chart are
given by the maximal ideals of Tn, which we will denote M(Tn)8.

7It will only be a Grothendeick Topology
8The M is for Maximum Spec
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Remark 3.2.3. In complex geometry, the maximal ideals of C[xi] give us affine space. In rigid analytic
geometry, the maximal ideals of the Tate algebra are points in Λn≤1. Keep this in mind: we’ll give some
justification for this in a moment

In classical algebraic geometry, we build spaces from gluing together from simple models, the affine
spaces C[xi]/I. For Tate algebras, we can construct the basic building blocks of rigid-analytic geometry, the
affinoids.

Definition 3.2.4. A affinoid algebra A is a quotient of the Tate algebra A = Tn/I.

Modding out by ideals of the form (z − a) has a different effect than in complex geometry. For example,
if we take T1/(z− f) we shouldn’t expect the ring we get to be Λ, as the ideal (z− f) need not be maximal.
This is different then complex geometry, where C[x]/(x− a) = C.
There is map from Λ → T1 → T1/(z − a), which is given by the inclusion to the constants. In the case of
algebraic geometry, we would construct an inverse map by evaluating the polynomials at a; however, in our
setting we cannot evaluate these polynomials at a, because there is no guarantee that the resulting power
series would converge. The valuation of ak may decrease faster than the coefficients of

∑
fkz

k increase in
valuation to infinity.
Let’s look at exactly where our constructions fail to produce an isomorphism of ring. For this example, let’s
assume that the valuation of a is 1. Consider some power series∑

fkz
k

where the valuation of fk is k/2, with vanishing constant term. If our intuition from polynomials were to
hold, this would be some element of the ideal (z − a). Our carryover proof would show that fk is divisible
by (z − a) by greedily constructing a power series

∑
gkz

k so that

(z − a)
∑

gkz
k =

∑
fkz

k.

We would start with

a · g1 = f1

a · g2 + g1 = f2

a · g3 + g2 = f3

and so on. However, with this construction, the valuations of the gi will be necessarily decreasing to −∞,
which is problematic!
On th plus side, this algorithm gives us a criteria for when points T1/(z− a) can be represented by elements
of Λ. The only elements of T1/(z−a) which are contained in the image of Λ are those which have valuations
satisfying the criteria {∑

fkz
k | lim

i→∞
(val(fk)− k val(a)) =∞

}
which is one of these convergence criterias that we were hoping to find.
Notice that if the valuation of a is negative, this criteria is automatically satisfied, and T1/(z−a) = Λ, which
provides some intuition for why:

Claim 3.2.5. M(T1) can be identified with a ∈ Λ≤1, the “unit ball” Λ.

Example 3.2.6. A good example to look at is the charts for the mirror built in the SYZ construction. Let
P be a polytope in P which is defined by looking by linear inequalites on H1(Fq,R). We define the affinoid
chart around q to be given by

X̌P := val−1(P ) =
⊔
p∈P

(H1(Fp, UΛ))

11



As a set of points, the chart of points in the mirror above this polytope is given by the max spec of what will
eventually become the ring of functions on the mirror space M(Op) = X̌P ,

OP :=

{∑
fAz

A
q | ∀v ∈ P, lim

|A|→∞
val(fA) + 〈v,A〉 =∞

}
This means for each v ∈ A, the minimal coefficients of fA cannot decrease very rapidly. This corresponds to
an intuition of convergence of these power series when evaluated on points in P . This example needs to be
fleshed out in more detail We can therefore express

OP := Tn/I,

which shows that this basic building block of the SYZ mirror is an affinoid.

To say that OP is the structure sheaf of the space X̌P , we’ll need to give X̌P a meaningful topology.
One could simply equip X̌ with the Zariski topology, but this topology doesn’t see the additional structure
of the norm. The norm on Λ gives a canonical topology on M(A). This isn’t the topology that we’ll end up
working with, but it gives us a starting point for understanding the topology.
For this exposition, we’ll make the simplifying assumption that that Λ is algebraically complete. To each
point x ∈M(A), and each element f ∈ A, we get an element f(x) ∈ Λ given by the quotient Λ = A/x. We
therefore can assign a valuation to these pairs, and we define the open balls of radius ε > 0 in M(A) to be

Bf,ε := {x ∈M | |f(x)| ≤ ε}.

The canonical topology is defined as the topology on M(A) generated from these open sets. Roughly each
maximal ideal correspond to a point in the valuation ring Λk≤1, 9 and we evaluate f at that point. The

maximal ideals correspond to the zero loci. 10 The resulting output is a power series in λ, and we would like
the leading order term of this evaluation to be sufficiently small– this means that the evaluation does not
diverge.
Problematically, the topology we get from using all of these open sets is too fine. This is a problem inherited
from the clopen basis that the nonarchimedian norm gives us 11. Since this is a topology with clopen basis,
the space is totally disconnected.
We’re saved by taking a cue from algebraic geometry. In algebraic geometry, we have open sets coming
from standard topology on Spec; however, one can also classify open affine subdomains via the universal
properties they satisfy, and use this to define the open sets.

Definition 3.2.7. A subset U ⊂M(A) is a affinoid subdomain if there is a morphism of affinoids 12

i : A→ AU

so that

• i(M(AU )) ⊂ U is contained in the affinoid subdomain.

• We have the following universal property: any other map of affinoids φ : A → B whose map on
MaxSpec lands in U factors through i.

M(B) U ⊂M(A)

M(AU )

φ

i

9This is not obvious, but the rough argument: each maximal ideal gives us map Tn → Tn/m, giving us an image of zi ∈ Λ.
The norm on Λ is multiplicative, but the norm on Tn/m is only submultiplicative; by looking at the norms of (zi)

n, one can
conclude that since |zi| = 1 the norm |φ(zi)| ≤ 1, giving us an element of the valuation ring.

10In the case where Λ is not complete, not every point will be represented and we may have to work with extensions of Λ.
11A non-archimedian norm gives the space an ultrametric
12The morphisms between affinoids should be k-Banach algebras, so the norm is important here!
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Open affine subschemes satisfy the same universal property; so one might make our definition of opens
based on this affinoid property instead. The open balls that we constructed earlier are examples of affinoid
subdomains, so this definition is compatible with our previous intuition of open. However, open affinoid
subdomains do not enjoy all the same properties of open sets.

Claim 3.2.8. Here are some properties of affinoid subdomains:

• Let U,U ′ ⊂M(A) be two affinoid subdomains. Then there intersection is an affinoid subdomian.

• If φ : M(B)→M(A) is a map of affinoid spaces, then φ−1(U) is an affinoid subdomian.

• U ′ ⊂ U is an affinoid subdomian of M(A) if and only if U ′ is an affinoid subdomain of M(AU ).

The most striking difference between affinoid subdomains and open sets is that there is no guarantee that
the union of affinoid subdomains is again an affinoid subdomain. Fortunately, there is a machinery from
algebraic geometry which can work with this initial data. Our substitute for a topology on M(A) will be a
category which has enough structure to perform sheaf theory (called a Grothendieck topology.

Definition 3.2.9. A set U ⊂M(A) is a admissible open if it admits a covering by affinoid subdomains Ui
so that for any map φ : M(B)→M(A) with φ(M(B) ⊂ U), a finite subset of φ−1(Ui) cover M(B).
We say that ∪Ui = U is an admissible cover of admissible opens if whenever φ : M(B)→ M(A) has image
φ(M(B) ⊂ U), the covering φ−1(Ui) of M(B) has a finite refinement by affinoids.
The Tate Topology on M(A) is the Grothendieck topology defined with objects admissible opens, and coverings
given by admissible covers.

To each admissible open, we have a sheaf OU = AU . Tate’s fundamental theorem shows that these
assemble into a structure sheaf.

Theorem 3.2.10. There us a unique extension of OU = AU to a sheaf OA. We have the left exact sequence

0→ AU →
∏

AUi
→
∏

AUi∩Uj
.

This theorem allows us to build up rigid analytic spaces from gluing together affinoids, and define what
coherent sheaves on rigid analytic space should be as well. Since we are allowed to build up rigid analytic
spaces from affinoid covers, we can continue our process of building a mirror to X with the SYZ fibration.
As previously discussed, the charts for the mirror built in the SYZ construction YP are (special) affinoid
subdomains, and can be glued together to build a rigid analytic space, which now comes with a structure
sheaf arising from the acylicity theorem.

Remark 3.2.11. Technically, the transition maps that we have defined are only defined after making local
choices of sections. The transition maps that we get do not satify the Cech cocycle condition, and so we do
not get a structure sheaf on the mirror space X̌, but instead get a sheaf twisted by the gerbe [α] constucted
before, which is a class that lives in

∏
AUi∩Uj∩Ak

.

We conclude with a definition / outline of how to assemble the mirror space.

Definition 3.2.12. Let X → Q be an SY Z fibration. The rigid analytic SYZ mirror is the space X̌ → Q.
After picking a polyhedral decomposition on Q, the structure sheaf on X̌ is defined by aseembling the ring of
functions be

OP :=

{∑
fAz

A
q | ∀v ∈ P, lim

|A|→∞
val(fA) + 〈v,A〉 =∞

}
on the affinoid subdomains X̌P into an analytic Gerbe on X̌ by using Tate’s acylicity theorem.
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4 Defining a Sheaf

Our definition of a sheaf will look a bit more combinatorial and algebraic than expected. This is overcome
the following difficuties:

• First off, X̌ is not a topological space, so any definition of a sheaf that we have will have to involve a
very combinatorial description based on the choice of Cech cover.

• Secondly, the way we constrcut a sheaf using family floer theory will mean we have to avoid some
of the intutions of “sections over open sets,” as when we pick an open set we will make choices of
perturbation data to get a well defined floer theory. On intersections of these open sets, we may have
made different choices of perturbation data, which will cause us to incorporate continuation maps of
Floer homology.

Let’s first describe the data we’ll need to associate to a Lagrangian in order to combinatorially build a sheaf
on the mirror. We will fix a cover of X̌ by polytopes which give us the affinoid subdomains that we used
to construct the rigid analytic structure on X̌ earlier. We’ll denote the set of vertices in this cover Σ, and
we’ll give Σ a order 13. To each vertex i ∈ Σ, let Pi be the collection of all polytopes which contain i. We’ll
assume that our cover is fine enough that Pi again gives us a cover in our affinoid domain. This gives us a
nice combinatorial description of our cover.
To ever subset I ⊂ Σ, let

PI =
⋂
i∈I

Pi

Since the intersection of affinoids are again affinoids, this corresponds to some affinoid OI representing the
ring of functions over this open subset of the mirror.
The topology on X̌ can now be stated combinatorially by considering the category OΣ be the category whose
objects are ordered subsets K ⊂ Σ and whose morphisms are defined by

hom(I, J) =

{
OJ If I ⊂ J
0 otherwise

Remember that I ⊂ J means that PJ ⊂ PI , so the homomorphisms are restrictions: giving us simply
multiplication by something on PJ .
A presheaf in this language is a functor

F : O → Vect(Λ).

For this to be a sheaf of OΣ-modules, we need compatibility with OΣ so that the map

OJ ⊗OI
F(I)→ F(J)

is an isomorphism.
To build the family Floer functor, to each lagrangian L we will assign create a Λ-vector space valued functor

J 7→ L(PJ).

We will construct this functor in 3 steps:

1. Construct a functor which assigns to each Pi a Λ-vector chain complex which is roughly given by the
floer homology with a fiber above a point in that polytope,

Li ∼ CF (Fq, L).

This assignment will not be functorial, because in the construction of the functor we will make choices
dependent on the set i. We’ll call this the local mirror functor.

13This won’t be important now, but becomes important later when we consider continuation data.
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2. For a set J , we’ll want to show that the choices made in the previous section lead to quasi-isomorphic
chain complexes on the overlaps PJ . This will be the construction of LJ of continuation maps inter-
polating between the choices made earlier. The main difficulty here is constructing these continuation
maps in such a way so that they themselves are compatible.

3. Show that the data that we’ve assembled in these quasi-isomorphisms make the homology of those
chain complexes a OΣ-module sheaf via “homological patching.”

4.1 Building the Chain Complexes

In this section, we construct the chain complexe Li and argue why this is OJ module.

The zero section gives us a canonical point in each fiber. We have CF ((F,ξ, L) '
⊕

x∈FbL Λ〈x〉. By equipping
Fb with a base point ∗ = Fb ∩ L0, we need to choose a homotopy class of path ∗ to x for each generator of
the Floer complex. This gives us a trivialization of the local system ξ over each intersection point x.
We count holomorphic disks with weight Tω(u) hol(∂U). Unless the portion of the boundary of boundary on
Fb is a closed loop, there is no reason for these areas zi to depend analytically on b. The trick is to do a
change of basis. Let gx(p) be the area swept by the path ∗ → x from the reference fiber Fb0 to Fb, which we
will call Γx. We then set

x̃ = T−gx(p)

. This means that we’ve rescaled the generators to take into account the possible wiggling of the chosen
generator L0.

Proposition 4.1.1 (Fukaya, Abouzaid). Given a disk u with a portion of boundary on Fb,

∂u ∩ Fb = A path from x→ y

Denote by [∂u] ∈ H1(Fb) the class of the loop from ∗ → x
∂u−−→ y ← ∗ Assume that u is a deformation of a

similar disk u0 with boundary of Fb0 . Then

Tω(u) holξ(∂U) = T gy(p)−gx(p)Tω(u0)z(Fb, ξ)
[∂u].

The left hand side is the weight we are interested in counting. The right hand term is

• A term T gy(p)−gx(p) which will be removed via rescaling

• A constant Tω(u0) dependent on reference fiber

• Analytic Coordinates z(Fb, ξ)
[∂u].
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Roughly, the contributions
Tω(u) holξ(∂U), T gy(p)−gx(p), Tω(u0)

give us the cylinders which were used to construct our analytic coordinates in the first place.

[u] = [u0] + Γy − Γx

=[u0] + Γy − Γx + Γ[∂u]

so

ω(u) = ω(u0) + gy(p)− gx(p) +
∑

kipI9

=ω(u0) + gy(p)− gx(p) + 〈p(b), [∂u]〉

4.2 An examination of Continuation Data

In the previous section, we chose data Di to each vertex which gave us the required transversality. We’ll
want to show that the sheaf that we construct essentially does not depend on this choice of data. For this,
we need to construct continuation maps. We now use the ordering of the vertices that we introduced before;
we’ll consider continuation maps which respect the ordering of the vertices.
Our goal: to associate to each subset I a continuation map

LI : Lmin I |PI
→ Lmax I |PI

[2− |I|]

satisfying compatibility conditions. The easiest way to see that we need all of these maps is to look at the
case where I = {i, j, k}. Then we have the following triangle of continuation maps

Li Lk

Lj

Lik

Lij Ljk

which we can construct with traditional machinery from Lagrangian intersection Floer theory. However, we
additionally need to know that there is compatibility between these three maps (so that this is a commutative
diagram up to homotopy.) The data of Lijk gives us the requisite compatibility condition; and LI gives us
higher homotopies that we’ll need to show that the data we’ve chosen assembles into a sheaf. The moduli
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space giving the map LI counts strips of the following form:

The marked points on the strips tell us how to interpolate between the various perturbation datum that
we’ve chosen, so between the i and i+ 1 marked points we require the strip to satisfy the the floer equation
for data associated to Li + 1. On the strip like ends, we ask these moduli spaces to satisfy the perturbation
data for Lmin I and Lmax I respectively. The moduli space of such strips has boundary components that arise
from 2 distinct phenomenon: it is possible that two of these marked points drift apart, leading to a breaking
which corresponds to the composition of perturbation data, or it is possible that the points drift together,
giving causing us to forget about some continuation map.
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All in all, the map defined by counting elements of this moduli space satisfy the following relation:

m1
max ILI + LIm1

min I =

( ∑
max I>i>min I

Li,...,max I ◦ Lmin I,...,i

)
+

( ∑
i<max I

LI\i

)

A more detailed argument of the previous section confirms that these are maps of Oi modules.

4.3 Homological Patching

The last step is to take the above information and assemble it into a [α] twisted sheaf; for this, we need to
show that the transition maps commute on the intersection up to a factor of α. To define this goes into more
detail than we want to cover here, but essentially the same problem that we had before shows up here: is
that there is not a consistant way to pick trivializations of the SYZ fibration over regions. As a result, the
structure coefficients used to weight the strips in Lik versus Ljk ◦Lij differ from eachother by the cocycle α.
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