Question 2:
Evaluate the following expression. Answer in the simplest form. (2 points each) (2.1) $\log _{5}(25 \sqrt{5})$

$$
\begin{aligned}
=\log _{5}(25 \cdot \sqrt{5}) & =\log _{5}(25)+\log _{5}(\sqrt{5}) \\
& =2 \\
& =5 / 2
\end{aligned}
$$

(2.2) $\log \frac{1}{10000}$

$$
\log _{10}\left(\frac{1}{10,000}\right)=\log _{10}\left(10^{-4}\right)=-4
$$

(2.3) $81^{\frac{3}{4}}$

$$
81=3^{4} \quad\left(81^{3 / 4}\right)=\left(3^{4}\right)^{3 / 4}=3^{3}=27
$$

$(2.4) \log _{8} 2^{6.3}$

$$
\log _{8} 2^{6 \cdot 3}=\frac{\log _{2} 2^{6.3}}{\log _{2} 8}=\frac{6.3}{3}=2.1
$$

(2.5) $\left(\frac{3}{2}\right)^{-3}$

$$
=\frac{3^{-3}}{2^{-3}}=\frac{1 / 27}{1 / 8}=8 / 27
$$

Question 4:
Let x, y, v, w be real numbers such that

$$
\begin{aligned}
\log _{4} x & =1.35, & \log _{4} y & =-0.2 \\
\ln v & =2.8, & \ln w & =0.4 .
\end{aligned}
$$

Evaluate the following (2 points each).
(4.1) $\log _{4}\left(\frac{x y}{4}\right)$

$$
\begin{aligned}
\log _{4} x+\log _{4} y-\log _{4} 4 & =1.35-0.2-1 \\
& =1.15 \cdot 1=.15
\end{aligned}
$$

(4.2) $\log _{4}\left(x^{100}\right)$

$$
=100 \cdot \log _{4}(x)=100 \cdot 1.35=135
$$

(4.3) $\log _{w} v$

$$
=\frac{\ln v}{h w}=\frac{2.8}{.4}=7
$$

(4.4) $\log _{16} y$

$$
=\frac{\log _{4} 4}{\log _{4} 16}=\frac{-.2}{2}=-.1
$$

(4.5) $\frac{v}{w^{2}}$

$$
\begin{aligned}
=e^{\ln \left({ }_{3}\right)}=e^{\ln -2 \ln N} & =e^{28-8} \\
& =e^{2}
\end{aligned}
$$

Question 5:
Let f be the function defined by

$$
f(x)=3 \cdot e^{5 x}
$$

(5.1) (5 points) Find a formula for f^{-1}.

$$
\begin{aligned}
& y=3 \cdot e^{5 x} \\
& \frac{y}{3}=e^{5 x} \\
& \ln \left(\frac{y}{3}\right)=5 x \\
& x=\frac{1}{5} \ln \left(\frac{y}{3}\right)
\end{aligned}
$$

(5.2) (5 points) Let g be the function defined by

$$
g(x)=\ln f(x)
$$

The graph of g is a line. Find the slope and the y-intercept of the graph of g.

$$
\begin{aligned}
& \ln \left(3 \cdot e^{5 x}\right) \\
= & \ln 3+\ln e^{5 x} \\
= & \ln 3+5 x \\
\text { Slope } & =5 \quad y^{\text {-int }}=\ln 3
\end{aligned}
$$

Question 6:
A colony of bacteria is growing exponentially, doubling in size every 100 minutes. At time $t=0$, the number of bacteria is 300 .
(6.1) (5 points) Find the function f such that $f(t)$ is equal to the number of bacteria at time t, where the unit of t is minutes.

$$
\begin{aligned}
A(t) & =A(0) \cdot 2^{t / d} z_{\text {dabs: }} \text { tire } \\
& =300 \cdot 2^{t / 100}
\end{aligned}
$$

(6.2) (5 points) For this problem, use the approximations $\log 2 \approx 0.3$ and $\log 3 \approx 0.5$. Approximately how many minutes will it take for the number of bacteria to be 1800 ?

$$
\begin{gathered}
1800=300 \cdot 2^{t / 100} \\
6=2^{t / 100} \\
\log _{10}(6)=\frac{t}{100} \log _{10}(2) \\
\frac{\log _{10}(6)}{\log _{16}(2)}=\frac{t}{100}
\end{gathered} \left\lvert\, \begin{aligned}
& t=100 \cdot \frac{\log _{10}(1)}{\log _{10}(2)} \\
& =100 \cdot \frac{\log _{16}(3 \cdot 2)}{\log _{10}(2)} \\
& \left.=100 \cdot \frac{.3+1.515}{3}=800 / 3\right)+\log _{10}(2)
\end{aligned}\right.
$$

(5) (a) Find the length of a side of a right triangle that has a hypotenuse of length 2 and an angle of $\frac{\pi}{4}$ radians.

(b) Find the area of a 1 radian slice in a circle with radius 5 .

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} \cdot(5)^{2} \cdot 1 \\
& =25 / 2
\end{aligned}
$$

(c) Calculate $\sin \frac{\pi}{12}$ given that $\cos \frac{\pi}{12}=\frac{\sqrt{6}+\sqrt{2}}{4}$. Please simplify your answer. hint: $8-4 \sqrt{3}=(\sqrt{6}-\sqrt{2})^{2}$

$$
\begin{aligned}
& \left(\cos \frac{\pi}{12}\right)^{2}+\left(\sin \frac{\pi}{12}\right)^{2}=1 \\
& \frac{\sqrt{6}+\sqrt{2}}{4}+\left(\sin \frac{\pi}{12}\right)^{2}=1 \\
& \left(\sin \frac{\pi}{12}\right)^{2}=1-\frac{(\sqrt{6}+\sqrt{2})^{2}}{4}
\end{aligned}
$$

$\left(\sin \frac{\pi}{12}\right)=\sqrt{1-\frac{(\sqrt{6}+\sqrt{2})^{2}}{4}}$
positive because $\frac{\pi}{12}$ in quadrant I.

Question 5:

The following figure is the unit circle centered at the origin. The angle between the positive x-axis and the line passing through the origin and the point $\left(x_{1}, y_{1}\right)$ is equal to θ. The line passing through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ and the line passing through $\left(x_{3}, y_{3}\right)$ and $\left(x_{4}, y_{4}\right)$ are parallel to the x-axis. The line passing through $\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ and the line passing through $\left(x_{4}, y_{4}\right)$ and $\left(x_{1}, y_{1}\right)$ are parallel to the y-axis.

Given that $x_{4}=\frac{12}{13}$. Evaluate the following. You do not need to show work. (1 point each)
(5.1) $x_{1}=x_{4}=\frac{12}{13}$
(5.2) $\cos (\theta)$

$$
\frac{12}{13}
$$

$$
\begin{equation*}
5 / 13 \tag{5.3}
\end{equation*}
$$

(5.4) $\sin (\theta)$

$$
5 / 13
$$

(5.5) $\tan (\theta)$
(5.7)

$$
\begin{aligned}
\sin (\pi-\theta) & =-\sin (-\theta)=\sin (\theta)=y_{1} \\
& =5 / 13
\end{aligned}
$$

(5.8) $\sin (3 \pi-\theta)$

$$
\begin{gathered}
=\sin (2 \pi+\pi-\theta)=\sin (\pi-\theta) \\
=5 / 13
\end{gathered}
$$

(5.9) $\sec (-\theta)$

$$
=\frac{1}{\cos (-\theta)}=\frac{1}{\cos (\theta)}=\frac{13}{12}
$$

$$
=\frac{\sin \theta}{\cos \theta}=5 / 3 / 12 / 13=5 / 12=\frac{1}{\sin (\pi-\theta)}=13 / 5
$$

(5.10) $\csc (\pi-\theta)$

