Question 2:

Evaluate the following expression. Answer in the simplest form. (2 points each)
(2.1) $\log _{5}(25 \sqrt{5})$
(2.2) $\log \frac{1}{10000}$
(2.3) $81^{\frac{3}{4}}$
(2.4) $\log _{8} 2^{6.3}$
(2.5) $\left(\frac{3}{2}\right)^{-3}$

Question 4:

Let x, y, v, w be real numbers such that

$$
\begin{aligned}
\log _{4} x & =1.35, & \log _{4} y & =-0.2, \\
\ln v & =2.8, & \ln w & =0.4 .
\end{aligned}
$$

Evaluate the following (2 points each).
(4.1) $\log _{4}\left(\frac{x y}{4}\right)$
(4.2) $\log _{4}\left(x^{100}\right)$
(4.3) $\log _{w} v$
(4.4) $\log _{16} y$
(4.5) $\frac{v}{w^{2}}$

Question 5:

Let f be the function defined by

$$
f(x)=3 \cdot e^{5 x}
$$

(5.1) (5 points) Find a formula for f^{-1}.
(5.2) (5 points) Let g be the function defined by

$$
g(x)=\ln f(x) .
$$

The graph of g is a line. Find the slope and the y-intercept of the graph of g.

Question 6:

A colony of bacteria is growing exponentially, doubling in size every 100 minutes. At time $t=0$, the number of bacteria is 300 .
(6.1) (5 points) Find the function f such that $f(t)$ is equal to the number of bacteria at time t, where the unit of t is minutes.
(6.2) (5 points) For this problem, use the approximations $\log 2 \approx 0.3$ and $\log 3 \approx 0.5$. Approximately how many minutes will it take for the number of bacteria to be 1800 ?
(5) (a) Find the length of a side of a right triangle that has a hypotenuse of length 2 and an angle of $\frac{\pi}{4}$ radians.
(b) Find the area of a 1 radian slice in a circle with radius 5 .
(c) Calculate $\sin \frac{\pi}{12}$ given that $\cos \frac{\pi}{12}=\frac{\sqrt{6}+\sqrt{2}}{4}$. Please simplify your answer. hint: $8-4 \sqrt{3}=(\sqrt{6}-\sqrt{2})^{2}$

Question 5:

The following figure is the unit circle centered at the origin. The angle between the positive x-axis and the line passing through the origin and the point $\left(x_{1}, y_{1}\right)$ is equal to θ. The line passing through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ and the line passing through $\left(x_{3}, y_{3}\right)$ and $\left(x_{4}, y_{4}\right)$ are parallel to the x-axis. The line passing through $\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ and the line passing through $\left(x_{4}, y_{4}\right)$ and $\left(x_{1}, y_{1}\right)$ are parallel to the y-axis.

Given that $x_{4}=\frac{12}{13}$. Evaluate the following. You do not need to show work. (1 point each) (5.1) x_{1}
(5.6) y_{2}
(5.2) $\cos (\theta)$
(5.7) $\sin (\pi-\theta)$
(5.3) y_{1}
(5.8) $\sin (3 \pi-\theta)$
(5.4) $\sin (\theta)$
(5.9) $\sec (-\theta)$
(5.5) $\tan (\theta)$
(5.10) $\csc (\pi-\theta)$

