UC Berkeley
 Department of Mathematics
 Math 32- Midterm 2 Jeff Hicks

- Please do not turn over this page until instructed to do so.
- This exam contains 7 problems, of which we will score 6 problems. Indicate to us which 6 problems you would like us to grade by checking the small box at the top of the page. We will only grade 6 problems. Each problem is worth 10 points, for a total score of 60 points on this exam.
- There are no notes or calculators allowed during the examination.
- Should you finish during the last 15 minutes of the exam period, please remain seated until we have collected all of the exams as other students will still be working.
- Solutions without work shown may not receive full credit. Box the solution you would like us to grade on each problem.
- This exam contains 8 pages (including this page.)

1. Using that constants x and y satisfy $\log _{2}(x)=\frac{1}{2}$, and $\log _{2}(y)=\frac{1}{3}$, simplify each of the following expressions to a number.
(a) (1 point) $\log _{2}(16)$

$$
\begin{aligned}
& 2 \cdot 2 \cdot 2 \cdot 2=16 \\
& \log _{2}(16)=4
\end{aligned}
$$

(b) (2 points) $\log _{2}(x \cdot y)$

$$
\begin{aligned}
\log _{2}(x \cdot y) & =\log _{2}(x)+\log _{2}(y) \\
& =\frac{1}{2}+\frac{1}{3}=\frac{5}{6}
\end{aligned}
$$

(c) (3 points) $\log _{2}\left(x^{3}\right)$

$$
\log _{2}\left(x^{3}\right)=3 \cdot \log _{2}(x)=3 \cdot \frac{1}{2}=\frac{3}{2}
$$

(d) (4 points) $\log _{2}\left(\frac{4 x}{y}\right)$.

$$
\begin{aligned}
\log _{2}\left(\frac{4 x}{y}\right) & =\log _{2}(4 x)-\log _{2}(y) \\
& =\log _{2}(4)+\log _{2}(x)-\log _{2}(y) \\
& =2+\frac{1}{2}-\frac{1}{3}=B / 6
\end{aligned}
$$

2. (a) (2 points) Calculate $\ln \left(e^{2}\right)$.

$$
\ln \left(e^{a}\right)=2 \ln (e)=2
$$

(b) (4 points) Estimate $5 \cdot e^{0.002}$.

$$
e^{0.002} \approx 1+.002
$$

$$
5 \cdot 1.002=5.01
$$

(c) (4 points) Estimate $\ln (.992)$.

$$
\begin{aligned}
\ln (x) & \approx x-1 \\
& \approx .992-1=-.008
\end{aligned}
$$

3. Mark the location of the following angles on the unit circle. All measures are in radians.
(a) (1 point) $\theta=\pi / 4$
(b) (2 points) $\theta=-\frac{2 \pi}{3}$
(c) $(2$ points $) \theta=\frac{8 \pi}{3} \cdot 4 \pi+\frac{2 \pi}{3}$

(a) (2 points) What is the y-coordinate of the angle marked in part b .

$$
-\frac{\sqrt{3}}{2}
$$

(b) (3 points) What are the values of $\cos \left(\frac{-\pi}{4}\right)$ and $\tan \left(\frac{-\pi}{4}\right)$.

$$
\begin{aligned}
& \cos \left(-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} \\
& \tan \left(-\frac{\pi}{4}\right)=-1
\end{aligned}
$$

4. Solving for Tan and Cos from Sin
(a) (5 points) Suppose that $\sin (\theta)=\frac{1}{3}$ and $0 \leq \theta \leq \pi / 2$. Compute $\tan (\theta)$.

$\sin (\theta)=\frac{1}{3}$	$(\cos \theta)^{2} \frac{8}{9}$

$$
(\cos \theta)^{2}+(\sin \theta)^{2}=1 \quad \cos \theta= \pm \sqrt{8 / 9}= \pm 2 \sqrt{2} / 3
$$

$$
\left.\begin{array}{l|l}
(\cos \theta)+(\sin \theta)=1 \\
(\cos \theta)^{2}+\frac{1}{9}=1
\end{array} \right\rvert\, \begin{aligned}
& \cos \theta= \pm \sqrt{8 / 9}= \pm 2 \sqrt{2} / 3 \\
& \text { since angle is in Qua } I_{1}+\text { vane. }
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =\frac{\sin \theta}{\cos \theta} \\
& =\frac{1 / 3}{2 \sqrt{2} / 3}=\frac{1}{2 \sqrt{2}}
\end{aligned}
$$

(b) (2 points) What is $\sin (\theta)-\sin (\theta+4 \pi)$?

$$
\begin{aligned}
& \sin (\theta)-\sin (\theta+4 \pi) \\
= & \sin (\theta)-\sin (\theta) \\
= & 0
\end{aligned}
$$

(c) (3 points) Suppose as before that $\sin (\theta)=\frac{1}{3}$. What is $\cos \left(\frac{\pi}{2}-\theta\right)$?

$$
\sqrt{\cos \left(\frac{\pi}{2}-\theta\right)}=\sin (\theta)=\frac{1}{3}
$$

5. Let P be a principal investment of $\$ 400$ dollars, invested at the start of 2019 with a 5 percent interest rate.
(a) (2 points) Calculate how much the investment will accrue after 2 years if the interest is not compounded.

$$
\begin{aligned}
A(t) & =P \cdot(1+r t) \\
& =400 \cdot(1+.05 \cdot 2) \\
& =400 \cdot(1.1)=440
\end{aligned}
$$

(b) (5 points) Calculate how much the investment will accrue after 2 years if the interest is compounded yearly.

$$
\begin{aligned}
& 400 \cdot(1.05)=420 \quad \text { After yer } 1 \\
& 420(1.05)=441.00 \text { After yer } 2
\end{aligned}
$$

(c) (3 points) Estimate how long it will take to become $\$ 800$ if continuously compounded at 5 percent interest.

Rule of 70 : Doubling time is about $\frac{70}{5 \%}=14$ years

6. (a) (2 points) Compute $\tan (\theta)$ for the triangle drawn below.

(b) (5 points) Given that $\tan (x)=3$, find the length H.

(c) (3 points) On this isosceles right triangle, determine the length of the side x.

$$
\begin{aligned}
& \sqrt{x^{2}+x^{2}}=6 \\
& x \cdot \sqrt{2}=6 \\
& x=6 / \sqrt{2}=6 \frac{\sqrt{2}}{2}=3 \sqrt{2} .
\end{aligned}
$$

7. (10 points) Given that $\log _{3}(x)=2.5$, find the base b so that $\log _{b}(x)=5$.

$$
\begin{gathered}
\log _{3}(x)=2.5 \\
5=\log _{b}(x)=\frac{\log _{3}(x)}{\log _{3}(b)} \\
5=\frac{2 \cdot 5}{\log _{3}(b)} \\
\log _{3}(b)=\frac{2 \cdot 3}{5}=\frac{1}{2} \\
3^{\log _{3}(b)}=3^{\frac{1}{2}} \\
b=3^{\frac{1}{2}}=\sqrt{3}
\end{gathered}
$$

