UC Berkeley
 Department of Mathematics
 Math 32- Midterm 1 Jeff Hicks

- Please do not turn over this page until instructed to do so.
- This exam contains 7 problems, of which we will score 6 problems. Indicate to us which 6 problems you would like us to grade by checking the small box at the top of the page. We will only grade 6 problems. Each problem is worth 10 points, for a total score of 60 points on this exam.
- There are no notes or calculators allowed during the examination.
- Should you finish during the last 15 minutes of the exam period, please remain seated until we have collected all of the exams as other students will still be working.
- This exam contains 8 pages (including this page.)

1. Let $f(x)$ be the function whose graph is drawn below.

(a) (1 point) What is $f(3)$?

$$
f(3)=1
$$

(b) (2 points) Explain whether or not the function $f(x)$ is one-to-one.
(a) (2 points) Describe the domain and range of f in interval form.

$$
\text { Domain is }[-2,3]
$$

$$
\text { Range is }[-1,2] \text {. }
$$

(c) (5 points) Draw the graph of the function $2 \cdot f(x-2)+1$ in the space below.
$2 \cdot f(x-2)+1$ sited right 2 scud act. 2 shifted up 1

2. Consider the functions given by the tables below.

x	$\mathrm{f}(\mathrm{x})$
1	1
2	3
3	4
4	5
5	2

x	$\mathrm{g}(\mathrm{x})$
1	4
2	4
3	2
4	2
5	3

(a) (1 point) What is $f(3)$?

$$
f(3)=4
$$

(b) (2 points) Compute $(f \cdot g)(5)$.

$$
f(5)=2 \quad g(5)=3 \quad(f \cdot g)(5)=10
$$

(c) (3 points) Compute $(g \circ f)(3)$.

$$
g(f(3))=g(4)=2
$$

(d) (4 points) Compute $\left(f^{-1} \circ g\right)(2)$.

$$
f^{-1}(g(2))=f^{-1}(4)=3
$$

3. (a) (5 points) Give the equation of a line containing the points $(4,2)$ and $(2,1)$.

$$
\begin{gathered}
m=\frac{2-1}{4-2}=\frac{1}{2} \\
(y-2)=\frac{1}{2}(x-4) \\
y-2=\frac{1}{2} x-2
\end{gathered}
$$

(b) (3 points) Find the equation of a line which passes through the origin and is perpendicular to the line from Part (a).

Slope of perpendiculs is -2

$$
y=-2 x
$$

(c) (2 points) Find the point of intersection between the lines from Parts (a) and (b).

$$
\begin{aligned}
& \left.\begin{array}{l}
y=\frac{1}{2} x \\
y=2 x
\end{array}\right\} 2 x=\frac{1}{2} x \Rightarrow \frac{3}{2} x=0 \Rightarrow x=0 \\
& x=0, g=2 x \Rightarrow g=0 \\
& (0,0)
\end{aligned}
$$

4. (10 points) Describe the set of real numbers satisfying the inequality $|2 x-2|<x$ using interval notation.

$$
|2 x-2|<x
$$

5. Consider the function

$$
f(x)=\frac{x+1}{x-1}
$$

(a) (2 points) Write the domain of $f(x)$ using interval notation.

$$
x \frac{\text { cannot be } 1}{(-\infty, 1) \cup(1, \infty)}
$$

(b) (5 points) Write a equation for the function $f^{-1}\left(\frac{y}{\left(\frac{y}{3}\right)}\right.$.

$$
\begin{aligned}
& y=\frac{x+1}{x-1} \\
& y(x-1)=x+1 \\
& y x-y=x+1 \\
& y x-x=y+1
\end{aligned} \int \begin{aligned}
& x(y-1)=y+1 \\
& x=\frac{y+1}{y-1} \\
& f^{-1}(y)=\frac{y+1}{y-1}
\end{aligned}
$$

(c) (3 points) Write down the the domain and range of $f^{-1}\binom{\boldsymbol{y}}{(3)}$ using interval notation.

$$
\begin{aligned}
\text { Range of } f^{\prime}(g) & =\text { Domain of } f(x) \\
& =(-\infty, 1) \cup(1, \infty) .
\end{aligned}
$$

6. (10 points) Graph the parabola given by the function. $f(x)=x^{2}-2 x-3$ in the space below. Find and mark the zeros and the vertex of the parabola.

$$
\begin{aligned}
& f(x)=x^{2}-2 x+(1-1)-3 \\
&=(x-1)^{2}-4 \\
& \text { vertex is }(1,-4)
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =x^{2}-2 x-3 \\
& =(x-3)(x+1)
\end{aligned}
$$

$$
\text { zoos ar } 3,-1 \text {. }
$$

7. (10 points) Find all points where the line $y=\frac{3}{4} x$ intersects the circle of radius 5 centered at the origin.

$$
\begin{array}{rl}
y & =\frac{3}{4} x \\
x^{2}+y^{2} & =5^{2} \\
x^{2}+\left(\frac{3}{4} x\right)^{2} & =5^{2} \\
x^{2}+\frac{9}{16} x^{2} & 25 \\
16 x^{2}+9 x^{2} & =25 \cdot 16 \\
25 x^{2} & =25 \cdot 14 \\
x^{2} & =16 \\
x & = \pm 4 \\
y & = \pm 3
\end{array}
$$

