Notes on the Exponential Function

Jeff Hicks

$3 / 13 / 2019$

The textbook doesn't contain notes on the exponential function and compounded interest.

A first stab at compounding Interest

We start by putting P dollars in our bank account. Suppose that we have a bank account which earns a rate of r each year. Suppose that this account is compounded m times yearly. Over one m-th of a year, the amount of interest earned will be $\frac{r}{m}$. Then after a period of t years, we will earn interest $m \cdot t$ times. This means that the amount of money that we will earn is

$$
\begin{aligned}
& P_{0} \cdot \underbrace{\left(1+\frac{r}{m}\right) \cdot\left(1+\frac{r}{m}\right) \cdots\left(1+\frac{r}{m}\right)}_{m \cdot t \text { times }} \\
& \quad=P_{0}\left(1+\frac{r}{m}\right)^{m \cdot t}
\end{aligned}
$$

Now, we will ask a slightly easier question: after t years, how much will we make on an investment of one dollar at 100% interest rate.

$$
\left(1+\frac{1}{m}\right)^{m \cdot t}
$$

This is slightly difficult to compute - because it is an exponential function. However, we make this a polynomial by making the substitution $m=\frac{n}{t}$.

$$
\left(1+\frac{t}{n}\right)^{n}
$$

Ok, we now have a more reasonable problem. Let's look at what this polynomial is for various quantities of n.

$$
\begin{array}{ll}
n=1 & \left(1+\frac{t}{1}\right)^{1}=1+t \\
n=2 & \left(1+\frac{t}{2}\right)^{2}=1+t+\frac{t^{2}}{4} \\
n=3 & \left(1+\frac{t}{3}\right)^{3}=1+t+\frac{t^{2}}{3}+\frac{t^{3}}{9}
\end{array}
$$

Ok, so we see that all of these are bigger than the linear function. But we'll have to work a bit harder to understand this example. One simplification which can be made which will give us a better idea of what is going on it to substitute $t=1$.

n	$1+\frac{1}{n}$	$\left(1+\frac{1}{n}\right)^{n}$
1	2	2
2	1.5	2.25
3	1.333	2.370
4	1.25	2.441
5	1.2	2.48832
6	1.166	2.5216
100	1.01	2.7048
1000	1.001	2.7169

This seems to be getting very close to a number, which is the answer to the following question:
Question 1. How much money do we earn with 100 percent interest after 1 year on a one dollar investment, after we compound it many, many times?

We will now take a bit of a diversion to see why $\left(1+\frac{1}{n}\right)^{n}$ should be close to anything.

A return to Polynomials, and the Binomial Coefficient Theorem

We will now look at a simpler question. What is

$$
(1+x)^{n}
$$

for large values of n ? Let's see what this is for some small values of n.

$$
\begin{array}{ccccccc}
n=1 & (1+x) & 1 & +x & & & \\
n=2 & (1+x)^{2} & 1 & +2 x & +x^{2} & & \\
n=3 & (1+x)^{3} & 1 & +3 x & +3 x^{2} & +x^{3} & \\
n=4 & (1+x)^{4} & 1 & +4 x & +6 x^{2} & +4 x^{3} & +x^{4} \\
n=5 & (1+x)^{5} & 1 & +5 x & +10 x^{2} & +5 x^{3} & +x^{4}
\end{array}
$$

Looking at the just the coefficients, we get the following numbers, which are called Pascal's triangle

1							
1	1						
1	2	1					
1	3	3	1				
1	4	6	4	1			
1	5	10	10	5	1		
1	6	15	20	15	6	1	
1	7	21	35	35	21	7	1

Notice that each number in this triangle is the sum of the two numbers above it and to the left. We see why this phenomenon occurs by carefully computing the $(1+x)^{n}=(1+x)(1+x)^{n-1}$. Let's look at why this occurs when $n=4$.

$$
\begin{aligned}
(1+x)^{4} & =(1+x) \cdot(1+x)^{3} \\
& =(1+x) \cdot\left(1+3 x+3 x^{2}+1\right) \\
& =1 \cdot\left(1+3 x+3 x^{2}+1\right)+x \cdot\left(1+3 x+3 x^{2}+1\right) \\
& =\left(\begin{array}{ccc}
1 & +3 x & +3 x^{2} \\
& +x^{3} \\
& +3 x^{2} & +3 x^{3} \\
+x^{4}
\end{array}\right) \\
& =1+(1+3) x+(3+3) x^{2}+(3+1) x^{3}+(1) x^{4} \\
& =1+4 x+6 x^{2}+4 x^{3}+x^{4}
\end{aligned}
$$

There is concise description the numbers which show up in the Pascals triangle.

Definition 1. The factorial of a positive whole number n is the product of all the positive whole numbers smaller than n,

$$
n!:=1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n
$$

For example,

$$
4!=1 \cdot 2 \cdot 3 \cdot 4=24
$$

The factorial function grows faster than the exponential of any number!
Claim 1. The coefficient in front of x^{k} in the expansion of $(1+x)^{n}$ is

$$
\frac{n!}{k!\cdot(n-k)!}
$$

Let's look at the example of $n=5$.

$$
\begin{array}{ll}
k & \frac{n!}{k!\cdot(n-k)!} \\
\hline 0 & \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{(1)(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5)}=1 \\
1 & \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{(1)(1 \cdot 2 \cdot 3 \cdot 4)}=5 \\
2 & \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{(1 \cdot 2)(1 \cdot 2 \cdot 3 \cdot 4)}=10 \\
3 & \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{(1 \cdot 2 \cdot 3)(1 \cdot 2)}=10 \\
4 & \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{(1 \cdot 2 \cdot 3 \cdot 4)(1)}=5 \\
5 & \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{(1)(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5)}=1
\end{array}
$$

A return to Exponential Functions

So, let's return to our expansion of

$$
\left(1+\frac{t}{n}\right)^{n}
$$

The k th term of this expansion has a coefficient

$$
\begin{aligned}
\frac{n!}{k!\cdot(n-k)!} \cdot \frac{1}{n^{k}} & =\frac{1 \cdot 2 \cdot 3 \cdots(n-k) \cdot(n-k+1) \cdots n}{(1 \cdot 2 \cdot 3 \cdots(n-k)) \cdot(n \cdot n \cdots n \cdot n) \cdot(1 \cdot 2 \cdot 3 \cdots k)} \\
& =\frac{(n-k+1) \cdots n}{(n \cdot n \cdots n \cdot n) \cdot(1 \cdot 2 \cdot 3 \cdots k)}
\end{aligned}
$$

When n is very large compared to $k,(n-k+1) / n$ is very close to 1 .

$$
\begin{aligned}
& \cong \frac{1}{1 \cdot 2 \cdot 3 \cdots k} \\
& =\frac{1}{k!}
\end{aligned}
$$

This means that for the smaller terms, we have an approximation:

$$
\left(1+\frac{t}{n}\right)^{n} \cong 1+\frac{t}{1!}+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\cdots
$$

Let's look at a couple of approximations:

k	$k!$	$\frac{1}{k!}$	Sum of first k terms
1	1	1	1
1	1	1	2
2	2	0.5	2.5
3	6	0.16666666666667	2.66666666666667
4	24	0.0416666666666667	2.70833333333333
5	120	0.00833333333333333	2.71666666666667
6	720	0.00138888888888889	2.71805555555556
7	5040	0.000198412698412698	2.71825396825397
8	40320	0.0000248015873015873	2.71827876984127
9	362880	0.00000275573192239859	2.71828152557319
10	3628800	0.000000275573192239859	2.71828180114638

As one can see, this becomes very close to a number very quickly! We call this number e.

