Half Angle and Angle Sum Identities

Jeff Hicks
Apr. 26, 2019
UC Berkeley

Outline

- Recap: Half angle formula
- Angle sum formula

Half Angle Formulas

Computing $\sin (\theta / 2)$
$\cos (2 \alpha)=1-2\left(\sin ^{2}(\alpha)\right) \quad$ Let's compote $\sin (\alpha)$ from $\cos (2 \alpha)$

$$
\begin{aligned}
& \cos (2 \alpha)-1=-2(\sin (\alpha))^{2} \\
& \frac{1-\cos (2 \alpha)}{2}=(\sin (\alpha))^{2} \\
& \pm \sqrt{\frac{1-\cos (2 \alpha)}{2}}=\sin (\alpha) \\
& \pm \sqrt{\frac{1-\cos (\theta)}{2}}=\sin \left(\frac{\theta}{2}\right)
\end{aligned}
$$

$$
U_{\text {sually }} \quad \alpha=\frac{\theta}{2}
$$

Identity

$$
\sin (\theta / 2)= \pm \sqrt{\frac{1 \mp \cos (\theta)}{2}}
$$

Example
Find an exact formula for $\sin (\pi / 12)$.

Idea: We know $\sin \left(\frac{\pi}{6}\right)$
Obscure that $\frac{\pi}{12}=\frac{1}{2} \cdot \frac{\pi}{6}$

$$
\begin{aligned}
\sin \left(\frac{1}{2} \cdot \frac{\pi}{6}\right) & = \pm \sqrt{\frac{1-\cos (\pi / 6)}{2}} \\
& = \pm \sqrt{\frac{1-\sqrt{3} / 2}{2}} \\
& =\sqrt{\frac{1}{2}-\sqrt{3} / 4}
\end{aligned}
$$

Computing $\cos (\theta / 2)$

$$
\begin{aligned}
& \cos (2 \alpha)=2(\cos (\alpha))^{2}-1 \\
& 1+\cos (2 \alpha)=2(\cos (\alpha))^{2} \\
& \frac{1+\cos (2 \alpha)}{2}=(\cos (\alpha))^{2} \\
& \pm \sqrt{\frac{1+\cos (2 \alpha)}{2}}=\cos (\alpha) \\
& \pm \sqrt{\frac{1-\cos (\theta)}{2}}=\cos (\theta) \quad \alpha=\frac{\theta}{2}
\end{aligned}
$$

Computing $\tan (\theta / 2)$

$$
\begin{aligned}
\tan (\alpha)= & \frac{\sin (\theta)}{\cos (\theta)}
\end{aligned}=\frac{\frac{2 \sin (\theta) \cos (\theta)}{2 \cos ^{2}(\theta)}}{\cos (\alpha)}=\frac{2 \sin (\alpha) \cos (\alpha)}{2 \cdot \cos ^{2}(\alpha)}=\frac{\sin (2 \alpha)}{2 \cos ^{2}(\alpha)} .
$$

Half Angle Formulas

Identity

$$
\begin{aligned}
& \cos \left(\frac{\theta}{2}\right)= \pm \sqrt{\frac{1+\cos (\theta)}{2}} \\
& \sin _{6 \rightarrow-}\left(\frac{\theta}{2}\right)= \pm \sqrt{\frac{1-\cos (\theta)}{2}} \\
& \tan \left(\frac{\theta}{2}\right)=\frac{\sin (\theta)}{1+\cos (\theta)}
\end{aligned}
$$

Angle Sum Formula

Computing $\cos (u+v)$.

Now weill comple the length c in 2 mays

$$
c^{2}=1^{2}+1^{2}-2 \cos (u+v)
$$

$$
\begin{gathered}
b=\sin (u)+\sin (v) \\
a=\cos (u)-\cos (v) \\
c^{2}=(\sin (u)+\sin (v))^{2}+\left(\cos (u)-\cos (v)^{2}\right. \\
1+1-2 \cos (u+v)=\sin ^{2} u-2 \sin u \sin v+\sin ^{2} v \\
+\cos ^{2} u-2 \cos u \cos v+\cos ^{2} v \\
1+1-2 \cos (u+v)= \\
\cos (u+v)= \\
=\cos u \sin u \sin v-2 \cos v-\cos v+1
\end{gathered}
$$

Angle sum for Cosine

Identity

$$
\cos (u+v)=\cos (u) \cos (v)-\sin (u) \sin (v)
$$

Compute this when $u=0$.
LiS $\cos (0+v)=\cos (v)$
R HS

$$
\begin{gathered}
\cos (0) \cos (v)-\sin (0) \sin (v) \\
1 \cos (v)-0 \cdot \sin (v) \\
=\cos (v)
\end{gathered}
$$

Application: Right angle identity for cosine

$$
\begin{aligned}
\cos (u+v)= & \cos u \cos v-\sin u \sin v \\
\cos \left(u+\frac{\pi}{2}\right) & =\cos (u) \cdot \cos (\pi / 2)-\sin (u) \cdot \sin (\pi / 2) \\
& =\cos (u) \cdot 0-\sin (u) \cdot 1 \\
& =-\sin (u)
\end{aligned}
$$

Condusion: $\quad \cos \left(u+\frac{\pi}{2}\right)=-\sin (u)$.

Example: Exactly compute $\cos (5 \pi / 12)$

$$
\text { Note: } \begin{aligned}
\frac{7 \pi}{12} & =\frac{3 \pi}{12}+\frac{4 \pi}{12} \\
& =\frac{\pi}{4}+\frac{\pi}{3} \\
\cos \left(\frac{7 \pi}{12}\right)=\cos \left(\frac{\pi}{4}+\frac{\pi}{3}\right) & =\cos \frac{\pi}{4} \cos \frac{\pi}{3}-\sin \frac{\pi}{4} \cdot \sin \frac{\pi}{3} \\
& =\frac{\sqrt{2}}{2} \cdot \frac{1}{2}-\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} \\
& =\sqrt{2} / 4-\sqrt{6} / 4
\end{aligned}
$$

Example: $\cos \left(\frac{3 \pi}{64}\right) \cdots$ that aug to get $\cos \left(\frac{\pi}{14}\right)$

$$
\cos \left(\frac{\pi}{64}+\frac{\pi}{64}+\frac{\pi}{64}\right)
$$

Angle sum for Sine

$$
\begin{aligned}
& \text { Recall that } \sin (\theta)=\cos (\theta-\pi / 2) \\
& \qquad \begin{aligned}
& \cos (u+v)=\cos u \cos v-\sin u \sin v \\
& \qquad \\
&=\cos \left(u+\omega-\frac{\pi}{2}\right)=\cos u \cos \left(\omega-\frac{\pi}{2}\right)-\sin (u) \cdot \sin \left(\omega-\frac{\pi}{2}\right) \\
&=\sin (u+\omega)=\cos u \cdot \sin w+\sin (u) \cos (\omega)
\end{aligned}
\end{aligned}
$$

Angle sum for Sine

Identity

$$
\sin (u+v)=\cos (u) \sin (v)+\sin (u) \cos (v)
$$

Computing $\tan (u+v)$

$$
\begin{aligned}
\tan (u+v) & =\frac{\sin (u+v)}{\cos (u+v)} \\
& =\frac{\sin (u) \cos (v)+\sin (v) \cos (u)}{\cos (u) \cos (v)-\sin (u) \sin (v)}
\end{aligned}
$$

Divide both nom denominator by $\cos u \cos v$.

$$
\begin{aligned}
& =\frac{\frac{\sin u \cos v}{\cos u \cos v}+\frac{\sin (v) \cos u}{\cos (\cos \cos (v)}}{\frac{\cos (\omega \cos (v)}{\cos (u \cos (u)}-\frac{\sin (u) \sin u)}{\cos (u) \cos (v)}} \\
& =\frac{\tan u+\tan v}{1-\tan u \tan v}
\end{aligned}
$$

Angle sum for tangent

Identity

$\tan (u+v)=\frac{\tan (u)+\tan (v)}{1-\tan (u) \tan (v)}$.

Exactly compute $\tan (7 \pi / 12)$

$$
\begin{aligned}
\tan (7 \pi / 12) & =\tan (\pi / 4+\pi / 3) \\
& =\frac{\tan \pi / 4+\tan (\pi / 3)}{1-(\tan \pi / 4) \cdot(\tan \pi / 3)} \\
& =\frac{1+\sqrt{3}}{1-1 \cdot \sqrt{3}}=\frac{1+\sqrt{3}}{1-\sqrt{3}}
\end{aligned}
$$

Angle difference formulas

$$
\begin{aligned}
& \sin (u+v)=\sin (u) \cos (v)+\cos (u) \sin (v) \\
& \cos (u+v)=\cos (u) \cos (v)-\sin (u) \sin (v) \\
& \tan (u+v)=\frac{\tan (u)+\tan (v)}{1-\tan (u) \tan (v)} . \\
& \text { Angle sun formicas }
\end{aligned}
$$

Application: Beats between two frequencies

Sum of Cosine Waves

$$
\cos (u+v) \cos (u-v)
$$

Sound and sin waves.

Sounds
pressure against ens $(t)=\sin (440 \cdot 2 \pi \cdot t)$

Temporal Aliasing

From previous slide, we have the identity $\cos (u+v) \cos (u-v)=\frac{1}{2} \cos (2 u)+\cos (2 v)$

