Double and Half angle Formulas

Jeff Hicks
Apr. 24, 2019
UC Berkeley

Outline

- Recap:Law of Cosines
- Double Angle Formulas
- Half Angle Formulas

Law of Cosines

Review: Pythagorean Theorem

a

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& c=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

what happens if this is not a rit angle

Computing all side lengths from SAS

Q. What is c ?

$$
\begin{aligned}
& c^{2}=h^{2}+x^{2} \quad\left(\begin{array}{l}
(f \pm \text { kan } \\
h \pm x)
\end{array}\right. \\
& h=a \cdot \sin \theta \\
& x=b-y \\
& y=a \cdot \cos \theta
\end{aligned}
$$

So: I know know x, h, so!
For comemere: $\quad c^{c^{2}=(a \cdot \sin \theta)^{2}+(b-a \cos \theta)^{2}+b^{2}-2 a b \cos \theta+a^{2}(\cos \theta)^{2}}$

$$
\begin{aligned}
& \text { Know xi. so! } \\
& c^{2}=(a \cdot \sin \theta)^{2}+(b-a \cos \theta)^{2} \quad \text { (we cold stop!) }
\end{aligned}
$$

$$
\begin{aligned}
c^{2} & =a^{2}\left((\sin \theta)^{2}+(\cos \theta)^{2}\right)+b^{2}-2 a b \cos \theta \\
& =a^{2}+b^{2}-2 a b \cos \theta .
\end{aligned}
$$

The Law of Cosines

For any triangle

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

Comparing Pythagorean to Law of Cosines

Original

$$
c^{2}=a^{2}+b^{2}
$$

New

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

$$
\begin{align*}
\theta=0 \quad c^{2}=a^{2}+b^{2}-2 a b \tag{a}\\
c^{2}=(a-b)^{2} \quad \text { or }(b-a)^{2}
\end{align*}
$$

And on right, $c=a-b$. So, mire god.

$$
\theta=\frac{\pi}{2} \quad c^{2}=a^{2}+b^{2}
$$

Example: Compute $\cos (\theta)$ of the below triangle.

By laud cosies

(SAS type identity) sole or θ using $\cos ^{-1}$.

Example: Compute $\cos (\theta)$ at the origin.

Finding the Missing Side Length

$$
\begin{aligned}
& x^{2}=(3 \sqrt{2})^{2}+7^{2}-2(3 \sqrt{2} \cdot 7) \cos \theta \\
& \cos \theta=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}} . \\
& \theta=\pi / 4 \quad 3 \quad 7 \quad 4 \\
& x^{2}=(3 \sqrt{2})^{2}+7^{2}-2 \cdot 3 \cdot \sqrt{2} \cdot 7 \cdot \frac{1}{\sqrt{2}} \\
& x^{2}=9.2+49-6.7 \\
& x^{2}=18+49-42 \\
& x^{2}=18+7 \\
& x^{2}=25 \quad x=5 \text {. }
\end{aligned}
$$

When to Use law of Cosines

Takeaways: Comparison between right triangles and general triangles

Double Angle Formulas

Goal: compute $\cos (2 \theta)$ from $\cos (\theta)$.

For wet big Δ, Law ot cosines:

$$
(2 \sin \theta)^{2}=1^{2}+1^{2}-2 \cdot 1 \cdot 1 \cdot \cos (2 \theta)
$$

$$
-2 \cos (2 \theta)=(2 \sin \theta)^{2}-2
$$

$$
\cos 2 \theta=-2(\sin \theta)^{2}+1
$$

$$
\begin{aligned}
\cos 2 \theta & \left.=-2(1-k \cos \theta)^{2}\right)+1 \\
& =2(\cos \theta)^{2}-1
\end{aligned}
$$

Identity

$$
\begin{array}{rlrl}
\cos (2 \theta) & =1-2(\sin (\theta))^{2} & \\
-\cos (2 \theta) & =2(\cos (\theta))^{2}-1 \\
\cos (2 \theta) & =(\cos (\theta))^{2}-(\sin (\theta))^{2} & & \cos ^{2} \theta+\operatorname{sis}^{2} \theta=1
\end{array}
$$

Example

Given that $\cos (\theta)=\frac{1}{3}$, compute $\cos (2 \theta)$.

$$
\begin{aligned}
\cos (2 \theta) & =2 \cdot(\cos \theta)^{2}-1 \\
& =2 \cdot\left(\frac{1}{3}\right)^{2}-1 \\
& =2 / 9-1=-7 / 9 .
\end{aligned}
$$

Calculating $\sin (2 \theta)$ from $\sin (\theta)$

Another Method

$$
\sin (2 \theta)=2 \sin \theta \cos \theta .
$$

Double Angle Formula for Sine

Identity

$$
\sin (2 \theta)=2 \cos (\theta) \sin (\theta)
$$

Computing Tangent

$$
\begin{aligned}
\sin (2 \theta) & =2 \cos (\theta) \sin (\theta) \\
\cos (2 \theta) & =(\cos (\theta))^{2}-(\sin (\theta))^{2} \\
\tan (2 \theta)=\frac{\sin (2 \theta)}{\cos (2 \theta)} & \left.=\frac{2 \cos (\theta) \sin (\theta)}{(\cos (\theta))^{2}-(\sin \theta)^{2}} \text {. by } \cos \theta\right)^{2} \\
& =\frac{2 \cdot \frac{\sin (\theta)}{\cos (\theta)}}{\frac{\cos (\theta)^{2}}{(\cos 6)^{2}}-\frac{(\sin \theta)^{2}}{(\cos \theta)^{2}}}=\frac{2 \tan \theta}{1-(\tan \theta)^{2}} .
\end{aligned}
$$

Double Angle Formula for Tangent

Identity

$$
\tan (2 \theta)=\frac{2 \tan (\theta)}{1-(\tan (\theta))^{2}}
$$

Example

Suppose that $\tan (\theta)=3$. Compute $\tan (2 \theta)$.

$$
\tan (2 \theta)=\frac{2 \cdot 3}{1-(3)^{2}}=\frac{2 \cdot 3}{1-9}=\frac{2 \cdot 3}{-8}=-\frac{3}{4} .
$$

Half Angle Formulas

Computing $\sin (\theta / 2)$

$$
\begin{aligned}
& \frac{\cos (2 \alpha)=1-2\left(\sin ^{2}(\alpha)\right)}{\cos (2 \alpha)-1=-2(\sin (\alpha))^{2}} \\
& \frac{1-\cos (2 \alpha)}{2}=(\sin (\alpha))^{2} \\
& \sin \alpha= \pm \sqrt{\frac{1-\cos (2 \alpha)}{2}} \quad \alpha=\theta / 2 \\
& \sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos (\theta)}{2}}
\end{aligned}
$$

Computing $\cos (\theta / 2)$

$$
\cos (2 \alpha)=2(\cos (\alpha))^{2}-1
$$

Computing $\tan (\theta / 2)$

$$
\tan (\alpha)=\frac{\sin (\theta)}{\cos (\theta)}=\frac{2 \sin (\theta) \cos (\theta)}{2 \cos ^{2}(\theta)}
$$

Half Angle Formulas

Identity

$$
\begin{aligned}
& \cos \left(\frac{\theta}{2}\right)= \pm \sqrt{\frac{1+\cos (\theta)}{2}} \\
& \cos \left(\frac{\theta}{2}\right)= \pm \sqrt{\frac{1-\cos (\theta)}{2}} \\
& \tan \left(\frac{\theta}{2}\right)=\frac{\sin (\theta)}{1+\cos (\theta)}
\end{aligned}
$$

