Identities with Inverse Trig Functions

Jeff Hicks

Apr. 17, 2019
UC Berkeley

Summary

- Review: "Inverse" trig functions.
- Identies: Compositions of $\sin (\theta)$ and $\sin ^{-1}(y)$.
- Example: Inverting functions with terms from trig
- Trig Identities: Right angle Identities
- Trig Identities: Even and Oddness

Review: Inverse Trig Functions

Definitions with a bit more meaning

Definition

The function arcsine, which is written as $\sin ^{-1}(y)$

- inputs a number y between -1 and 1 ,
- outputs the angle $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ whose vertical-coordinate on the unit circle is y.

Definitions with a bit more meaning

Definition

The function arcsine, which is written as $\sin ^{-1}(y)$

- inputs a number y between -1 and 1 ,
- outputs the angle $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ whose vertical-coordinate on the unit circle is y.

Definition

The function arccosine, which is written as $\cos ^{-1}(x)$

- inputs a number x between 0 and 1,
- outputs the angle $0 \leq \theta \leq \pi$ whose horizontal coordinate on the unit circle is x.

Definition

The function arctangent, which is written as $\tan ^{-1}(y)$

- inputs a number m between $-\infty$ and ∞,
- outputs the angle which represents a line of slope m.

What do they look like?

Cancelling out two functions

Identity

For any value in their respective domains,

$$
\begin{array}{r}
\sin \left(\sin ^{-1}(y)\right)=y \\
\cos \left(\cos ^{-1}(x)\right)=x \\
\tan \left(\tan ^{-1}(m)=m\right.
\end{array}
$$

Identity

For any value in their respective domains,

$$
\begin{array}{r}
\sin \left(\sin ^{-1}(y)\right)=y \\
\cos \left(\cos ^{-1}(x)\right)=x \\
\tan \left(\tan ^{-1}(m)=m\right.
\end{array}
$$

This makes sense! For instance, the first composition asks

What about the other composition?

$\sin ^{-1}(y)$ inverts the function $\sin (\theta)$ for some values of θ. For example:

$$
\begin{gathered}
\sin ^{-1}(\sin (0))=\sin ^{-1}(0)=0 \\
\sin ^{-1}(\sin (\pi / 4))=\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}
\end{gathered}
$$

What about the other composition?

$\sin ^{-1}(y)$ inverts the function $\sin (\theta)$ for some values of θ. For example:

$$
\begin{gathered}
\sin ^{-1}(\sin (0))=\sin ^{-1}(0)=0 \\
\sin ^{-1}(\sin (\pi / 4))=\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}
\end{gathered}
$$

But...

$$
\sin ^{-1}(\sin (4 \pi))=\sin ^{-1}(0)=0
$$

Unpacking the definitions again

There are many different angles with the same vertical coordinate!

Computing $\sin ^{-1}(\sin (\theta))$

Example

Evaluate $\sin ^{-1}\left(\sin \left(\frac{3 \pi}{4}\right)\right)$.
Finding the sine of $3 \pi / 4$

Computing $\sin ^{-1}(\sin (\theta))$

Example

Evaluate $\sin ^{-1}\left(\sin \left(\frac{3 \pi}{4}\right)\right)$.

Finding the sine of $3 \pi / 4$

Finding the angle with height $(\sqrt{2}) / 2$

Computing $\sin ^{-1}(\sin (\theta))$

Example

Evaluate $\sin ^{-1}\left(\sin \left(\frac{3 \pi}{4}\right)\right)$.

Finding the sine of $3 \pi / 4$

Finding the angle with height $(\sqrt{2}) / 2$

In this example, $\sin ^{-1}(\sin (3 \pi / 4))=\pi / 4$.

Compositions of trig functions and their "inverses"

Recall

Function	Domain	Range (Outputs)
$\sin ^{-1}(\theta)$	$[-1,1]$	$[-\pi / 2, \pi / 2]$
$\cos ^{-1}(\theta)$	$[-1,1]$	$[0, \pi]$
$\tan ^{-1}(\theta)$	$(-\infty, \infty)$	$(-\pi / 2, \pi / 2)$

Example

$$
\begin{aligned}
\sin ^{-1}(\sin (5 \pi / 6)) & =\sin ^{-1}(1 / 2) \\
& =\pi / 6
\end{aligned}
$$

Recall

Function	Domain	Range (Outputs)
$\sin ^{-1}(\theta)$	$[-1,1]$	$[-\pi / 2, \pi / 2]$
$\cos ^{-1}(\theta)$	$[-1,1]$	$[0, \pi]$
$\tan ^{-1}(\theta)$	$(-\infty, \infty)$	$(-\pi / 2, \pi / 2)$

Example

$$
\begin{aligned}
\cos ^{-1}(\cos (-\pi / 3)) & =\cos ^{-1}(1 / 2) \\
& =\pi / 3
\end{aligned}
$$

Recall

Function	Domain	Range (Outputs)
$\sin ^{-1}(\theta)$	$[-1,1]$	$[-\pi / 2, \pi / 2]$
$\cos ^{-1}(\theta)$	$[-1,1]$	$[0, \pi]$
$\tan ^{-1}(\theta)$	$(-\infty, \infty)$	$(-\pi / 2, \pi / 2)$

Example

$$
\begin{aligned}
\tan ^{-1}(\tan (3 \pi / 4)) & =\tan ^{-1}(-1) \\
& =-\pi / 4
\end{aligned}
$$

Drawing Triangles to make computations

Example

Compute $\cos \left(\sin ^{-1}\left(\frac{4}{5}\right)\right)$.

Drawing Triangles to make computations

Example

Compute $\cos \left(\sin ^{-1}\left(\frac{4}{5}\right)\right)$.

So what we are asking in this instance is what is $\cos (\theta)$ of the above angle, which is $\frac{3}{5}$.

Drawing Triangles to make computations

Example

Compute $\tan \left(\sin ^{-1}\left(\frac{21}{29}\right)\right)$.

Drawing Triangles to make computations

Example

Compute $\tan \left(\sin ^{-1}\left(\frac{21}{29}\right)\right)$.

So in this case we are asking about $\tan (\theta)$ of this angle, which is $\frac{21}{20}$

Important takeaway

Order matters! Keep in mind the difference between these two compositions:

$$
\begin{aligned}
\sin \left(\sin ^{-1}(y)\right)=y & \sin ^{-1}(\sin (\theta)) \text { may or may not be } \theta \\
\cos \left(\cos ^{-1}(x)\right)=x & \cos ^{-1}(\cos (\theta)) \text { may or may not be } \theta \\
\tan \left(\tan ^{-1}(m)=m\right. & \tan ^{-1}(\tan (\theta)) \text { may or may not be } \theta
\end{aligned}
$$

Identities with $\sin ^{-1}$ and $\cos ^{-1}$

Right angle Identities

Recall with $\sin (\theta)$ and $\cos (\theta)$ that we have the following right angle identities:

$$
\begin{aligned}
& \sin (\theta)=\cos (\theta-\pi / 2) \\
& \cos (\theta)=\sin (\theta+\pi / 2)
\end{aligned}
$$

These should translate into right-angle identities for arcsine and arccosine.

Right angle Identities for $\sin ^{-1}$ and $\cos ^{-1}$

Identity

$$
\sin ^{-1}(y)+\cos ^{-1}(y)=\frac{\pi}{2} .
$$

Right angle Identities for $\sin ^{-1}$ and $\cos ^{-1}$

Identity

$$
\sin ^{-1}(y)+\cos ^{-1}(y)=\frac{\pi}{2} .
$$

Example

Given that

$$
\sin ^{-1}\left(\frac{1}{2} \sqrt{2+\sqrt{2}}\right)=\frac{\pi}{8}
$$

compute $\cos ^{-1}\left(\frac{1}{2} \sqrt{2+\sqrt{2}}\right)$.

Right angle Identities for $\sin ^{-1}$ and $\cos ^{-1}$

Identity

$$
\sin ^{-1}(y)+\cos ^{-1}(y)=\frac{\pi}{2} .
$$

Example

Given that

$$
\sin ^{-1}\left(\frac{1}{2} \sqrt{2+\sqrt{2}}\right)=\frac{\pi}{8}
$$

compute $\cos ^{-1}\left(\frac{1}{2} \sqrt{2+\sqrt{2}}\right)$.

Solution:

$$
\cos ^{-1}\left(\frac{1}{2} \sqrt{2+\sqrt{2}}\right)=\frac{\pi}{2}-\frac{\pi}{8}=\frac{3 \pi}{8}
$$

How to remember this identity

How to remember this identity

Proof.

Let's draw a picture which contains both $\sin ^{-1}(t)$ and $\cos ^{-1}(t)$.

Important Observation: The angles of a triangle add up to π radians.

$$
\begin{gathered}
\sin ^{-1}(t)+\cos ^{-1}(t)+\frac{\pi}{2}=\pi \\
\sin ^{-1}(t)+\cos ^{-1}(t)=\frac{\pi}{2}
\end{gathered}
$$

Identities with negation

Review of Trig identities with negation

Recall

From last section we had the following two identities with negation.

$$
\begin{aligned}
-\sin (\theta) & =\sin (-\theta) \\
-\tan (\theta) & =\tan (-\theta) .
\end{aligned}
$$

Review of Trig identities with negation

Recall

From last section we had the following two identities with negation.

$$
\begin{aligned}
-\sin (\theta) & =\sin (-\theta) \\
-\tan (\theta) & =\tan (-\theta)
\end{aligned}
$$

Identity

Negation effects inverse trig functions in the following way:

$$
\begin{aligned}
\sin ^{-1}(-y) & =-\sin ^{-1}(y) \\
\tan ^{-1}(-m) & =-\tan ^{-1}(m)
\end{aligned}
$$

Example

If $\sin ^{-1}(.9)=1.119$, what is $\sin ^{-1}(-.9)$?

Example

If $\sin ^{-1}(.9)=1.119$, what is $\sin ^{-1}(-.9)$?
By our identity it must be $\sin ^{-1}(-.9)=-1.119$.

Example

If $\sin ^{-1}(.9)=1.119$, what is $\sin ^{-1}(-.9)$?
By our identity it must be $\sin ^{-1}(-.9)=-1.119$.

Example

For which values of m is $\tan ^{-1}(m)=\pi / 2+\tan ^{-1}(-m)$?

Example

If $\sin ^{-1}(.9)=1.119$, what is $\sin ^{-1}(-.9)$?
By our identity it must be $\sin ^{-1}(-.9)=-1.119$.

Example

For which values of m is $\tan ^{-1}(m)=\pi / 2+\tan ^{-1}(-m)$?
By our identity,

$$
\begin{aligned}
\tan ^{-1}(m) & =\pi / 2+\tan ^{-1}(-m) \\
\tan ^{-1}(m) & =\pi / 2-\tan ^{-1}(m) \\
2 \tan ^{-1}(m) & =\pi / 2 \\
\tan ^{-1}(m) & =\frac{\pi}{4} \\
m & =1
\end{aligned}
$$

How can we remember this? Both $\sin ^{-1}(y)$ and $\tan ^{-1}(m)$ are odd functions.

What about Arccosine?

Recall that for $\cos (t)$ we have the following identity:

$$
-\cos (t)=\cos (t+\pi)
$$

This gives us the following identity for $\cos ^{-1}(x)$.

Identity

$$
\cos ^{-1}(-x)=\pi-\cos ^{-1}(x)
$$

Example

Suppose that $\cos ^{-1}(x)=0.7$. Estimate $\cos ^{-1}(-x)$.

Example

Suppose that $\cos ^{-1}(x)=0.7$. Estimate $\cos ^{-1}(-x)$.
$\cos ^{-1}(-x)=\pi-\cos ^{-1}(x) \sim 3.14-.7=2.44$.

How can we remember this? It can help to draw a picture of $\cos ^{-1}(x)$.

