Inverse Trig Functions

Jeff Hicks

Apr. 15, 2019
UC Berkeley

Summary

- Question: Why would one want to invert trig functions?
- Review: Inverse functions
- Problem: Why we can't actually invert trig functions.
- Solution: What's the next best thing, and some side effects.

Background

Why we want to do this

There are practical reasons to want to invert trigonometric functions.

Example

Question: What is the measure of θ ?
Idea: With trigonometry, we know that

$$
\sin (\theta)=\frac{3}{5}
$$

Problem: What does this tell us about θ ?

Re-examination of $\sin (\theta)$

What is $\sin (\theta)$ exactly?

- θ is the measurement of an angle - in other words, a number.
- $\sin (\theta)$ is a function
- Which inputs a number θ,
- And outputs a different number (the y-coordinate of the point on the unit circle.)

Goal

If we want to learn what θ is from the function $\sin (\theta)$, we need to find a inverse for the function $\sin (\theta)$.

Reviewing Inverse Functions

Review: Inverses

Definition

If $f(x)$ is one-to-one function, the inverse function $f^{-1}(y)$ is

$$
f^{-1}(y)=(\text { The number } x \text { so that } f(x)=y .)
$$

Thataway: The inverse function f^{-1} is like an "undo" function for f,

$$
f^{-1}(f(x))=x
$$

Example

The inverse of $g(x)=2 x+1$ is $g^{-1}(y)=\frac{y-1}{2}$. We can check this:

$$
\begin{aligned}
g^{-1}(g(x)) & =\frac{(2 x+1)-1)}{2} \\
& =\frac{2 x}{2} \\
& =x
\end{aligned}
$$

Example

If $f(x)=e^{x}$, then $f^{-1}(y)=\ln (y)$ because

$$
f^{-1}(f(x))=\ln \left(e^{x}\right)=x
$$

What about one-to-one.

Recall, that one-to-one means that no two inputs produce the same output.

Example

$$
f(x)=\frac{x}{2}+1 \text { is an example of a one-to-one }
$$ function, whose inverse is

$$
f^{-1}(y)=2(y-1)
$$

Horizontal Line Test

The horizontal line test says that a function $f(x)$ is one-to-one if every horizontal line only touches the graph of $f(x)$ at a single point.

Example

$g(x)=x^{2}$ is not an example of a one-to-one function, as both $g(1)=1$ and $g(-1)=1$.

Rule: If $f(x)$ fails the horizontal line test it cannot have an inverse!

This is important to remember, as we are about to try to work around this rule.

What if f is not one-to-one?

Big Idea

If $f(x)$ fails the horizontal line test, we can still sometimes construct an inverse for a portion of f.

Example

Consider $f(x)=x^{2}$. Then $g(y)=\sqrt{y}$ is almost an inverse for $f(x)$, because whenever x is a positive number, we have

$$
g(f(x))=\sqrt{x^{2}}=x
$$

But this doesn't work when x is negative. For example.

$$
g(f(-1))=\sqrt{(-1)^{2}}=\sqrt{(1)}=1
$$

Defining $\sin ^{-1}(x)$

Returning to our main problem.

Question: What is the measure of θ ?
Idea: With trigonometry, we know that

$$
\sin (\theta)=\frac{3}{5}
$$

If $\sin (\theta)$ has an inverse function, then

$$
\theta=\sin ^{-1}\left(\frac{3}{5}\right) .
$$

Can we invert $\sin (\theta)$?

We've set ourselves the goal of inverting $\sin (\theta)$.

The sine function really, really fails the horizontal line test.

Can we invert $\sin (\theta)$?

What if we are a little bit less ambitious, and only try to invert a portion of the function?

Over this smaller portion, the function has an inverse.

Definition

The function arcsine, which is written as $\sin ^{-1}(y)$

- inputs a number y between -1 and 1 ,
- outputs the angle $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ with $\sin (\theta)=y$.

The graph of this function looks something like this:

Is $\sin ^{-1}(x)$ an inverse?

$\sin ^{-1}(y)$ inverts the function $\sin (\theta)$ for some values of θ. For example

$$
\begin{gathered}
\sin ^{-1}(\sin (0))=\sin ^{-1}(0)=0 \\
\sin ^{-1}(\sin (\pi / 4))=\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}
\end{gathered}
$$

But...

$$
\sin ^{-1}(\sin (4 \pi))=\sin ^{-1}(0)=0
$$

Returning to our Example

Question: What is the measure of θ ?
Idea: With trigonometry, we know that

$$
\sin (\theta)=\frac{3}{5}
$$

If $\sin (\theta)$ has an inverse function, then

$$
\begin{aligned}
\theta & =\sin ^{-1}\left(\frac{3}{5}\right) . \\
& \sim .643 \mathrm{rads}
\end{aligned}
$$

Other Trig Functions

What about Cosine?

Definition

The function arccosine, which is written as $\cos ^{-1}(x)$

- inputs a number x between -1 and 1 ,
- outputs the angle $0 \leq \theta \leq \pi$ with $\cos (\theta)=x$.

The graph of this function looks something like this:

$$
f(x)=\cos ^{-1}(x)
$$

Where is this an inverse for Cosine?

As in the example of $\sin (\theta)$ we only invert a portion of the function.

Notice that the red portion passes the horizontal line test.

What about Tangent?

Definition

The function arctangent, which is written as $\tan ^{-1}(m)$

- inputs a number m between $-\infty$ and ∞,
- outputs the angle $\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ with $\tan (\theta)=m$.

The graph of this function looks something like this:

Where is this an inverse for Tangent?

Definitions with a bit more meaning

Definition

The function arcsine, which is written as $\sin ^{-1}(y)$

- inputs a number y between -1 and 1 ,
- outputs the angle $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ whose vertical-coordinate on the unit circle is y.

Definition

The function arccosine, which is written as $\cos ^{-1}(x)$

- inputs a number x between 0 and 1,
- outputs the angle $0 \leq \theta \leq \pi$ whose horizontal coordinate on the unit circle is x.

Definition

The function arctangent, which is written as $\tan ^{-1}(y)$

- inputs a number m between $-\infty$ and ∞,
- outputs the angle which represents a line of slope m.

Examples

Computing $\sin ^{-1}(\theta)$

Example

Evaluate $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$.
What is the angle θ between $-\pi / 2$ and $\pi / 2$ so that $\sin (\theta)=\frac{\sqrt{3}}{2}$?

The angle θ is $\frac{\pi}{3}$.

Example

- The slope of the line is 1 .
- $\tan (\theta)$ is the slope of the line.
- Then $\tan ^{-1}(1)$ is the measure of the angle.
- $\tan ^{-1}(1)=\frac{\sqrt{2}}{2}$.

Domain and Range

Domain and Range of Inverse Trig Functions

Function	Domain	Range
$\sin ^{-1}(\theta)$	$[-1,1]$	$[-\pi / 2, \pi / 2]$
$\cos ^{-1}(\theta)$	$[-1,1]$	$[0, \pi]$
$\tan ^{-1}(\theta)$	$(-\infty, \infty)$	$(-\pi / 2, \pi / 2)$

Compositions of Inverse Trig Functions

Takeaway from today: Sine and Arcsine cancel each other out in one direction.

$$
\begin{aligned}
& \sin \left(\sin ^{-1}(y)\right)=y \\
& \cos \left(\cos ^{-1}(x)\right)=x \\
& \tan \left(\tan ^{-1}(m)\right)=m
\end{aligned}
$$

However, the reverse statements are not true!

Computing $\cos ^{-1}(\theta)$

Example

Evaluate $\cos ^{-1}\left(\cos \left(\frac{5 \pi}{4}\right)\right)$.

However, $\cos ^{-1}(y)$ only still takes values between 0 and π.
This gives $\cos ^{-1}\left(\frac{-\sqrt{2}}{2}\right)=\frac{3 \pi}{4}$.

We will look at this example in more detail on Wednesday.

