Inverse Trig Functions

Jeff Hicks

Apr. 15, 2019

UC Berkeley

Jeff Hicks (UC Berkeley)

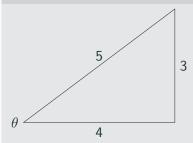
- Question: Why would one want to invert trig functions?
- Review: Inverse functions
- Problem: Why we can't actually invert trig functions.
- Solution: What's the next best thing, and some side effects.

Background

Why we want to do this

There are practical reasons to want to invert trigonometric functions.

Example



Question: What is the measure of θ ? **Idea:** With trigonometry, we know that $\sin(\theta) = \frac{3}{5}$

 $\sin(\theta) = -\frac{1}{5}$. What does this tell i

Problem: What does this tell us about θ ?

Re-examination of $sin(\theta)$

What is $sin(\theta)$ exactly?

- θ is the measurement of an angle in other words, a number.
- $sin(\theta)$ is a function
 - Which inputs a number θ ,
 - And outputs a different number (the *y*-coordinate of the point on the unit circle.)

Goal

If we want to learn what θ is from the function $\sin(\theta)$, we need to find a inverse for the function $\sin(\theta)$.

Reviewing Inverse Functions

Review: Inverses

Definition

If f(x) is one-to-one function, the inverse function $f^{-1}(y)$ is

$$f^{-1}(y) = ($$
The number x so that $f(x) = y$. $)$

Thataway: The inverse function f^{-1} is like an "undo" function for f,

 $f^{-1}(f(x)) = x$

Jeff Hicks (UC Berkeley)

Example

The inverse of g(x) = 2x + 1 is $g^{-1}(y) = \frac{y-1}{2}$. We can check this:

$$g^{-1}(g(x)) = \frac{(2x+1)-1}{2}$$

= $\frac{2x}{2}$
= x

Example

If
$$f(x) = e^x$$
, then $f^{-1}(y) = \ln(y)$ because

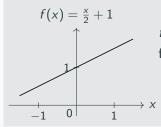
$$f^{-1}(f(x)) = \ln(e^x) = x.$$

Jeff Hicks (UC Berkeley)

What about one-to-one.

Recall, that *one-to-one* means that no two inputs produce the same output.

Example



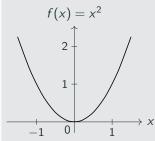
 $f(x) = \frac{x}{2} + 1$ is an example of a one-to-one function, whose inverse is

$$f^{-1}(y) = 2(y-1).$$

Horizontal Line Test

The horizontal line test says that a function f(x) is one-to-one if every horizontal line only touches the graph of f(x) at a single point.

Example



 $g(x) = x^2$ is not an example of a one-to-one function, as both g(1) = 1 and g(-1) = 1.

Rule: If f(x) fails the horizontal line test it *cannot have an inverse!*

This is important to remember, as we are about to try to work around this rule.

What if *f* is not one-to-one?

Big Idea

If f(x) fails the horizontal line test, we can still sometimes construct an inverse for a portion of f.

Example

Consider $f(x) = x^2$. Then $g(y) = \sqrt{y}$ is almost an inverse for f(x), because whenever x is a positive number, we have

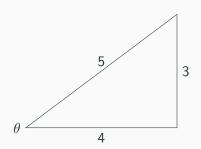
$$g(f(x)) = \sqrt{x^2} = x.$$

But this doesn't work when x is negative. For example.

$$g(f(-1)) = \sqrt{(-1)^2} = \sqrt{(1)} = 1.$$

Defining $\sin^{-1}(x)$

Returning to our main problem.



Question: What is the measure of θ ? **Idea:** With trigonometry, we know that

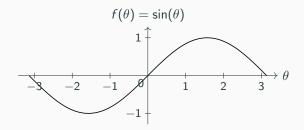
$$\sin(\theta) = \frac{3}{5}$$

If $sin(\theta)$ has an inverse function, then

$$\theta = \sin^{-1}\left(\frac{3}{5}\right).$$

Can we invert $sin(\theta)$?

We've set ourselves the goal of inverting $sin(\theta)$.



The sine function really, really fails the horizontal line test.

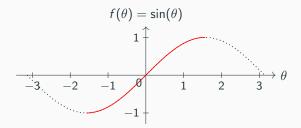
Jeff Hicks (UC Berkeley)

Inverse Trig Functions



Can we invert $sin(\theta)$?

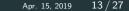
What if we are a little bit less ambitious, and only try to invert a portion of the function?



Over this smaller portion, the function has an inverse.

Jeff Hicks (UC Berkeley)

Inverse Trig Functions



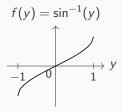
Defining $\sin^{-1}(x)$ A problem

Definition

The function *arcsine*, which is written as $\sin^{-1}(y)$

- inputs a number y between -1 and 1,
- outputs the angle $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ with $\sin(\theta) = y$.

The graph of this function looks something like this:



Is $\sin^{-1}(x)$ an inverse?

 $\sin^{-1}(y)$ inverts the function $\sin(\theta)$ for some values of θ . For example

 $\sin^{-1}(\sin(0)) = \sin^{-1}(0) = 0.$

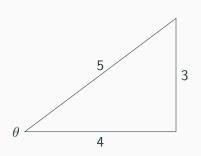
$$\sin^{-1}(\sin(\pi/4)) = \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$$

But...

$$\sin^{-1}(\sin(4\pi)) = \sin^{-1}(0) = 0.$$

A problem

Returning to our Example



Question: What is the measure of θ ? **Idea:** With trigonometry, we know that

$$\sin(heta) = rac{3}{5}$$

If $sin(\theta)$ has an inverse function, then

$$\theta = \sin^{-1} \left(\frac{3}{5}\right).$$
$$\sim .643 \text{rads}$$

Other Trig Functions

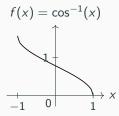
What about Cosine?

Definition

The function *arccosine*, which is written as $\cos^{-1}(x)$

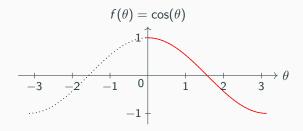
- inputs a number x between -1 and 1,
- outputs the angle $0 \le \theta \le \pi$ with $\cos(\theta) = x$.

The graph of this function looks something like this:



Where is this an inverse for Cosine?

As in the example of $sin(\theta)$ we only invert a portion of the function.



Notice that the red portion passes the horizontal line test.

Jeff Hicks (UC Berkeley)

Inverse Trig Functions

Apr. 15, 2019 18 / 27

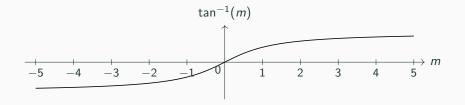
What about Tangent?

Definition

The function *arctangent*, which is written as $tan^{-1}(m)$

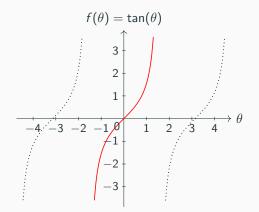
- inputs a number m between $-\infty$ and ∞ ,
- outputs the angle $\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ with $tan(\theta) = m$.

The graph of this function looks something like this:



Other Trig Functions

Where is this an inverse for Tangent?



Definitions with a bit more meaning

Definition

The function *arcsine*, which is written as $sin^{-1}(y)$

- inputs a number y between -1 and 1,
- outputs the angle $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ whose vertical-coordinate on the unit circle is *y*.

Definition

The function *arccosine*, which is written as $\cos^{-1}(x)$

- inputs a number x between 0 and 1,
- outputs the angle 0 ≤ θ ≤ π whose horizontal coordinate on the unit circle is x.

Definition

The function *arctangent*, which is written as $tan^{-1}(y)$

- inputs a number m between $-\infty$ and ∞ ,
- outputs the angle which represents a line of slope *m*.

Examples

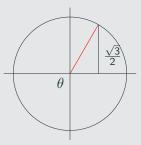
Examples

Computing $\sin^{-1}(\theta)$

Example

Evaluate $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$.

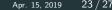
What is the angle θ between $-\pi/2$ and $\pi/2$ so that $\sin(\theta) = \frac{\sqrt{3}}{2}$?



The angle θ is $\frac{\pi}{3}$.

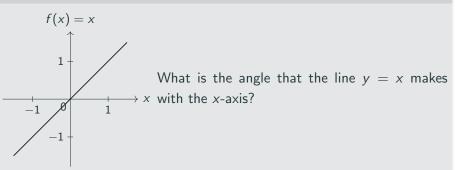
Jeff Hicks (UC Berkeley)

Inverse Trig Functions



Examples

Example



- The slope of the line is 1.
- $tan(\theta)$ is the slope of the line.
- Then $tan^{-1}(1)$ is the measure of the angle.
- $tan^{-1}(1) = \frac{\sqrt{2}}{2}$.

Jeff Hicks (UC Berkeley)

Domain and Range

Domain and Range of Inverse Trig Functions

Function	Domain	Range
$\sin^{-1}(heta)$	[-1, 1]	$[-\pi/2,\pi/2]$
$\cos^{-1}(heta)$	[-1,1]	$[0,\pi]$
$ an^{-1}(heta)$	$(-\infty,\infty)$	$(-\pi/2,\pi/2)$

Compositions of Inverse Trig Functions

Takeaway from today: Sine and Arcsine cancel each other out in one direction.

 $\sin(\sin^{-1}(y)) = y$

$$\cos(\cos^{-1}(x)) = x$$

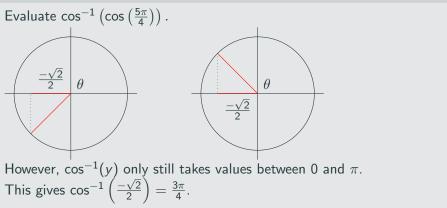
$$\tan(\tan^{-1}(m)) = m$$

However, the reverse statements are not true!

Jeff Hicks (UC Berkeley)

Computing $\cos^{-1}(\theta)$

Example



We will look at this example in more detail on Wednesday.

