Some Solutions to Homework 1

January 30, 2019

0.1.8

First notice that whenever $\frac{1}{t}$ is rational, we can write

$$
\frac{1}{t}=\frac{a}{b}
$$

where a and b are integers. This means that we can write

$$
t=\frac{a}{b}
$$

and therefore t is also written as a fraction with integer numerator and denominator. This is the definition of t being a rational number. In summary,

$$
\begin{equation*}
\text { If } 1 / t \text { is rational, } t \text { is rational } \tag{1}
\end{equation*}
$$

Now suppose that t is irrational, as is stated in the claim. This means that t is not a rational number. Then it cannot be the case that $\frac{1}{t}$ is rational! This is because (1) would imply that t is rational as well, which contradicts the starting assumption. Therefore, it cannot be the case that $\frac{1}{t}$ is a rational number when t is an irrational number.

Since $\frac{1}{t}$ cannot be a rational number, this means that $\frac{1}{t}$ is an irrational number.

0.2 .10

This is a computation by distribution. We write out every step here, but you have a mnemonic that works well for you, feel free to use it instead.

$$
\begin{aligned}
(4 a-5)^{2} & =(4 a-5) \cdot(4 a-5) \\
& =(4 a-5) \cdot 4 a-(4 a-5) \cdot 5 \\
& =16 a^{2}-20 a-20 a+25 \\
& =16 a^{2}-40 a+25
\end{aligned}
$$

0.2 .38

Here we find a least common denominator for these fractions, and then simplify.

$$
\begin{aligned}
\frac{x-3}{5}+\frac{5}{y+2} & =\frac{(x-3)(y+2)}{5(y+2)}-\frac{5 \cdot 5}{5(y+2)} \\
& =\frac{x \cdot y-3 y+2 x-6-25}{5(y+2)} \\
& =\frac{x \cdot y-3 y-2 x-31}{5(y+2)} .
\end{aligned}
$$

0.2.60

Compare, for instance:

$$
\begin{aligned}
& 8 /(2 / 2)=8 / 1=8 \\
& (8 / 2) / 2=4 / 2=2
\end{aligned}
$$

