Practice Midterm Problems

Name:
Disclaimer: These solutions may have small errors!
0.1. Let S be the bottom 5 faces of the cube with corners at $(\pm 1, \pm 1, \pm 1)$.

Compute the flux of the vector field $\left\langle x, x^{2}+y, z^{2}\right\rangle$ through the 5 faces of the cube. (Hint: You do not actually have to integrate over the 5 different faces.)
Solution: The trick is to compute the integral of the divergence over the interior, and then subtract of the integral of the flux through the top face.
Let S_{t} be the top face, and S_{c} be the entire cube. Since the entire cube is closed, we could instead compute the flux though the entire cube:

$$
\begin{aligned}
\iint_{S_{c}} \vec{F} \cdot \vec{n} d S & =\iiint_{V} \operatorname{div} \vec{F} d V \\
& =\iiint(1+1+2 z) d V \\
& =\iint_{S_{c}} 2+2 z d V \\
& =8+0=8
\end{aligned}
$$

Now, we just need to compute the flux through the top face. It comes out to be

$$
\iint_{S_{t}} \vec{F} \cdot \vec{n} d A=\iint_{S_{t}}\left\langle x, x^{2}+y, 1^{2}\right\rangle \cdot\langle 0,0,1\rangle d A=4
$$

So, the flux through our original surface is $16-4=12$.
0.2. Consider the vector field $\vec{F}(x, y)=\left\langle 2 x \sin ^{3}(y), 3 x^{2} \sin ^{2}(y) \cos (y)\right\rangle$. Compute $\int_{C} \vec{F} \cdot d \vec{r}$ for this vector field along the curve

$$
\vec{r}(t)=\langle\cos (t), \sin (t)\rangle
$$

as t goes from $-\pi / 2$ to $\pi / 2$.
Solution:This is a conservative vector field, so the path that we take does not matter between 2 points to compute the integral. Instead of taking this half circle, lets take the straight line between $(0,-1)$ and $(0,1)$. Notice that x is always equal to zero along this curve. Then

$$
\int_{C^{\prime}}\left\langle 2(0) \sin ^{3}(y), 3(0)^{2}(y) \cos (y)\right\rangle \cdot(0,1) d t=0
$$

0.3. Compute the double integral of the function $\iint_{R} e^{9 x^{2}+16 y^{2}} d A$ over the region R where $9 x^{2}+16 y^{2} \leq 1$ and $x \geq 0$.
Solution:This is a problem asking you to make a substitution of coordinates. Let's instead use

$$
\begin{aligned}
& x=r / 3 \cos \theta \\
& y=r / 4 \sin \theta
\end{aligned}
$$

Then

$$
\begin{array}{rlr}
x_{r} & =\frac{1}{3} \cos (\theta) & x_{\theta}=\frac{-r}{3} \cos (\theta) \\
y_{r} & =\frac{1}{4} \sin (\theta) & y_{\theta}
\end{array}=\frac{r}{4} \sin (\theta)
$$

Then, using the jacobian we have that $d A=\frac{1}{12} r d r d \theta$. Our integral becomes

$$
\iint_{R} e^{9 x^{2}+16 y^{2}} d A=\iint_{r \leq 1} \frac{1}{12} r e^{r} d r d \theta
$$

which we can solve by integration by parts.

$$
\begin{aligned}
& =\frac{1}{6} \pi \int_{0}^{1} r e^{r} d r d \theta \\
& =\left.\frac{1}{6} \pi\left(r e^{r}-e^{r}\right)\right|_{0} ^{1}=\pi / 6
\end{aligned}
$$

0.4. The boundary of a region is given by the curve $r(t)=\left\langle t^{2}, \sin (t)\right\rangle$ as t goes from $-\pi$ to π. Compute the area of this region.
Solution:I think this is probably one of the more difficult problems that you could be asked. The idea is instead of computing the integral over a region, you want to use Green's theorem in reverse to have an integral over the boundary of the region. So, we look at the vector field $\vec{F}=\langle-y, 0\rangle$
Then we have

$$
\begin{aligned}
\iint 1 d V & =\iint \operatorname{curl} \vec{F} d V \\
& =\oint \vec{F} \cdot d \vec{r} \\
& =\oint\langle\sin (t), 0\rangle \cdot\langle 2 t, \sin (t)\rangle d t \\
& =\oint 2 t \sin (t) d t \\
& =2 \int_{-\pi}^{\pi} t \sin (t) d t \\
& =2 t \cos (t)+\left.\sin (t)\right|_{0} ^{2 \pi}=4 \pi
\end{aligned}
$$

0.5. Consider the surface S parameterized by

$$
\vec{r}(\theta, z)=\left\langle 1 / z^{2} \cos \theta, 1 / z^{2} \sin \theta, z\right\rangle
$$

where $0 \leq 2 \pi \leq \theta$ and $1 \leq z$. This surface looks a bit like a spike going off to infinity along the z axis.

- Compute the surface area of the resulting parameterized surface. (Don't Do this, this problem is broken!)
- Consider the vector field

$$
\vec{F}(x, y, z)=\frac{1}{2}\langle x, y, 0\rangle
$$

- Compute by hand the flux of the vector field \vec{F} through the surface.
- Let D be disk of unit radius whose center intersects the z axis perpendicularly at $z=1$. Show the flux of \vec{F} through D is 0 .
- Conclude that the volume between S and D is finite.

Solution:If we attempt to compute the surface area, we'll need to compute the surface area element $d S$. We have that

$$
\begin{aligned}
& r_{\theta}=\left\langle\frac{-1}{z^{2}} \sin (\theta), \frac{1}{z^{2}} \cos \theta, 0\right\rangle \\
& r_{z}=\left\langle\frac{-2}{z^{3}} \cos \theta, \frac{-2}{z^{3}} \sin \theta, 1\right\rangle \\
& 2
\end{aligned}
$$

$$
r_{\theta} \times r_{z}=\left\langle\frac{1}{z^{2}} \cos \theta, \frac{1}{z^{2}} \sin \theta, \frac{2}{z^{5}}\right\rangle
$$

Then length of this is

$$
\sqrt{1 / z^{4}-2 / z^{10}} d z d \theta
$$

which simplifies to

$$
1 / z^{2} \sqrt{1-2 / z^{6}} d z d \theta
$$

Which isn't very good! Sorry, bad problem.
Ok, now let's look at computing the volume instead. We have that

$$
\vec{F} \cdot \vec{n} d S=\frac{1}{2}\left\langle\frac{1}{z^{2}} \cos \theta, \frac{1}{z^{2}} \sin \theta, 0\right\rangle \cdot\left\langle\frac{1}{z^{2}} \cos \theta, \frac{1}{z^{2}} \sin \theta, \frac{2}{z^{5}}\right\rangle
$$

which works out to $\int_{0}^{2 \pi} \int_{1}^{\infty} \frac{1}{2 z^{4}} d z d \theta$. The integral of this is $\pi / 3$.
0.6.

- Draw the region for the integral

$$
\int_{0}^{1} \int_{x}^{1} e^{y^{2}} d y d x
$$

- Compute the integral (Suggestion: switch order of integration)
0.7. Bonus, Worth no Points Show that there is no function from the cube to the square

$$
f:[0,1] \times[0,1] \times[0,1] \rightarrow[0,1] \times[0,1]
$$

so that:

- $f(x, y, 0)=(x, y)$
- $f(x, y, t)=(x, y)$ whenever $x, y=0$ or 1
- $f(x, y, 1)$ is completely contained in the boundary of the square.

