Practice Midterm Problems

Name:
0.1. Let S be the bottom 5 faces of the cube with corners at $(\pm 1, \pm 1, \pm 1)$.

Compute the flux of the vector field $\left\langle x, x^{2}+y, z^{2}\right\rangle$ through the 5 faces of the cube. (Hint: You do not actually have to integrate over the 5 different faces.)
0.2. Consider the vector field $\vec{F}(x, y)=\left\langle 2 x \sin ^{3}(y), 3 x^{2} \sin ^{2}(y) \cos (y)\right\rangle$. Compute $\int_{C} \vec{F} \cdot d \vec{r}$ for this vector field along the curve

$$
\vec{r}(t)=\langle\cos (t), \sin (t)\rangle
$$

as t goes from $-\pi / 2$ to $\pi / 2$.
0.3. Compute the double integral of the function $\iint_{R} e^{9 x^{2}+16 y^{2}} d A$ over the region R where $9 x^{2}+16 y^{2} \leq 1$ and $x \geq 0$.
0.4. The boundary of a region is given by the curve $r(t)=\left\langle t^{2}, \sin (t)\right\rangle$ as t goes from $-\pi$ to π. Compute the area of this region.
0.5. Consider the surface S parameterized by

$$
\vec{r}(\theta, z)=\left\langle 1 / z^{2} \cos \theta, 1 / z^{2} \sin \theta, z\right\rangle
$$

where $0 \leq 2 \pi \leq \theta$ and $1 \leq z$. This surface looks a bit like a spike going off to infinity along the z axis.

- (Don't Do this!) Compute the surface area of the resulting parameterized surface.
- Consider the vector field

$$
\vec{F}(x, y, z)=\frac{1}{2}\langle x, y, 0\rangle
$$

- Compute by hand the flux of the vector field \vec{F} through the surface.
- Let D be disk of unit radius whose center intersects the z axis perpendicularly at $z=1$. Show the flux of \vec{F} through D is 0 .
- Conclude that the volume between S and D is finite.
0.6.
- Draw the region for the integral

$$
\int_{0}^{1} \int_{x}^{1} e^{y^{2}} d y d x
$$

- Compute the integral (Suggestion: switch order of integration)
0.7. Bonus, Worth no Points Show that there is no function from the cube to the square

$$
f:[0,1] \times[0,1] \times[0,1] \rightarrow[0,1] \times[0,1]
$$

so that:

- $f(x, y, 0)=(x, y)$
- $f(x, y, t)=(x, y)$ whenever $x, y=0$ or 1
- $f(x, y, 1)$ is completely contained in the boundary of the square.

