1. Is it Conservative?

Check if the following vector fields are conservative over all of the plane. If it is, find the potential function. If it is not, find a closed curve (i.e. a loop) where integrating over the curve gives a non-zero line integral.

- $\langle x+y, y\rangle$
- $\langle y, x\rangle$
- $\langle-y, x\rangle$
- $\left\langle y+2 y x, x+x^{2}\right\rangle$

2. Evaluate Line Integrals

Let $\vec{F}=\langle x, y\rangle$.

- Verify that \vec{F} is conservative.
- Let $C_{a b}$ be the curve $(a t, b t)$ where t goes from 0 to 1 . Compute the function defined by

$$
f(a, b):=\int_{C_{a b}} \vec{F} d r
$$

- Verify that $\nabla f=\vec{F}$.

